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HIGH-FREQUENCY REFRACTION AND DIFFRACTION
IN GENERAL MEDIA*

By D. S. JONES
Department of Mathematics, University College of North Staffordshire, Keele

(Communicated by M. J. Lighthill, F.R.S.—Received 6 February 1962)
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The working hypothesis of this paper is that the effect of an opaque boundary on the propagation
of high-frequency waves in a general medium is to produce a wave reflected according to the
laws of geometrical optics together with a field which to a first approximation depends upon the
difference between the curvatures of a tangent ray and the boundary. In order to determine the
latter field the model of a medium, whose properties vary linearly, above a straight boundary is
employed. A first approximation to the field with this model is found, together with an estimate
of the error. The formula for the field is then cast into a form which is invariant under a con-
formal mapping. Since the difference in curvatures of a tangent ray and the boundary is invariant
it is suggested that the field is applicable for all media and boundaries provided that certain con-
ditions imposed in deriving the approximation are fulfilled.

As a check the predictions of the formula are compared with independent calculations on (i) a
stratified medium above a straight boundary, (ii) a circular cylinder in a homogeneous medium,
(iii) a parabolic cylinder in a homogeneous medium, (iv) a circular cylinder in a circularly
stratified medium. TIn all cases the two calculations are in agreement.

In a final section the results are extended to phenomena which are aperiodic in time.

The proposed universal formula is simple to apply, requiring only the calculation of rays in
the medium.
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342 D. S. JONES

INTRODUCTION

The problem of the propagation of waves in an inhomogeneous medium in the presence of
an obstacle arises in a number of different applications, e.g. for electromagnetic, acoustic
and elastic waves whenever the properties of the medium vary from point to point. Fre-
quently, too, the medium is anisotropic but in the following it will always be assumed that
the medium is isotropic.

Considerable effort has been devoted to this problem in past years and a convenient sum-
mary of much of the work is contained in Brekhovskikh’s book (1960). Recent contributions
to the theory are due to Friedlander (1955), Seckler & Keller (1959) and Felsen (1959).

When the medium is homogeneous the theory is in some respects simpler and con-
tributions have been made by White (1922), Van der Pol & Bremmer (1937, 1938, 1939),
Fock (1945, 1946, 1948, 1951), Bremmer (1949), Franz & Depperman (1952), Franz
(1954), Rice (1954), Keller (1956), Wu (1956), Kear (1956), Beckmann & Franz (1957),
Jeffreys & Lapwood (1957), Jones (1957a,b, 1962), Jones & Whitham (1957), Levy &
Keller (1957), Goriainov (1958), Levy (1958), Goodrich (1959), Clemmow (1959),
Wait & Conda (1959).

The object of the following analysis is to provide a new treatment which unifies all the
preceding results and shows how they are related. At the same time there is developed a
formula that can be evaluated in a comparatively simple manner and is valid for the whole
field subject to certain restrictions.

When a high-frequency wave falls on a boundary a first approximation to the field is
provided by geometrical optics. It is well known that this approximation is bad in any
shadow region and in the neighbourhood where the transition from shadow to illumination
occurs. The basic idea of the following paper is that the effects in these regions are mainly
dependent on the difference in curvatures of the boundary and a ray tangent to the boun-
dary. This difference takes its simplest form in two extreme cases: (i) when the boundary is
straight so that its curvature is zero, (ii) when the medium is homogeneous so that the
curvature of the ray is zero. Most attention in the past has been devoted to problems which
come under class (ii). Here, however, we shall adopt (i) as the fundamental model. There
is a gain in mathematical simplicity by so doing and, moreover, the connexion between
the two classes brings out clearly why creeping waves arise in class (ii).

Since the rays of geometrical optics play a considerable part in our theory §1 is devoted
to an exposition of general ray theory. Explicit calculations for rays in a stratified medium
are given in § 2, while the particular results for our model (a source in 2 medium in which
the square of the refractive index varies linearly above a straight boundary) are derivedin § 3.
Section 4 contains the exact solution for our model. Its approximate evaluation by the
method of stationary phase and the comparison with ray theory is made in §5. An alter-
native evaluation by means of residues is provided in § 6; this method is valid only in a
certain region, usually part of the shadow. Both methods fail near the shadow boundary.
The behaviour of this field is obtained, together with an estimate of the error, in §§7 to 9.
Examination of its form in § 10 reveals that if the formula for the behaviour near the shadow
boundary is suitably interpreted it contains all the preceding results. In other words a
formula valid for the field everywhere is obtained.
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HIGH-FREQUENCY REFRACTION AND DIFFRACTION 343

In§ 11 this formula is recast into a form which is invariant under a conformal mapping.
This has two advantages: (i) if the formula is proved to be valid for any particular problem
it will be known to be valid for all problems which can be obtained by conformal mapping,
and (ii) it replaces the curvature of the tangent ray of our model by the difference in
curvatures of the tangent ray and boundary and therefore provides a field which fits in
with our basic idea. It is this invariant formula which it is suggested provides the field
everywhere for all media and boundaries provided that certain conditions stated more
precisely later on are satisfied. Section 12 gives a corresponding formula for the field on
the boundary.

In§13 an independent calculation is made on a medium with monotonically increasing
refractive index above a straight boundary and found to agree with our formula. Section 14
is concerned with the predictions of our formula for various obstacles in a homogeneous
medium—they agree with independent calculations made for these problems. A circular
cylinder in a radially stratified medium is considered in § 15 and confirmation of results
obtained independently for certain cases achieved. The agreement with our formula in
all these cases provides strong evidence of its universality although not absolute proof.

The deductions which can be made about fields aperiodic in time are set down in § 16.

An appendix contains certain properties of functions required in the text. References
to equations in this appendix are prefixed by the letter A, e.g. (A 1).

1. GEOMETRICAL OPTICS
The basic problem is to find solutions of
VA +ENY = 0, (1)
where £ is a positive real constant and N is a non-negative real function of position. If we
regard % as the wave number for propagation in a standard homogeneous medium such as
free space then NV is the refractive index of the medium under consideration.

Although there is no explicit reference to the time ¢ in (1) we may if we wish think of it
as the equation for harmonic waves in a medium with equation

2
s ) 2)
With the time variation ¢'* understood, £ = w/a, and N = ay/a where a = g, in the stan-
dard homogeneous medium. Then large values of £ will correspond to high frequencies
or small wavelengths.

We may also think of (1) as the Fourier transform with respect to time of (2). In this case
the behaviour of solutions of (1) for large £ is related to the behaviour of solutions of (2)
immediately behind wave fronts, a point which will be taken up in § 16.

From now on, we shall restrict attention to (1) with £ large in some sense to be specified
precisely later on. Also only two space dimensions will be used so that (1) reduces to

V2 —

oy o
S+ g N = 0. (3)

Partial differential equations involving a large parameter can be tackled by the method
of geometrical optics or (as it is sometimes known) the WKBJL method. In this method

it is assumed that P o= e L (y, 4o [k 4y /K24 ..0).
43-2
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344 D. S. JONES

Substituting in (3), taking derivatives term by term and collecting together powers of &
we obtain

k*(N2—grad? L)y, —ik{y, V2L+2grad L.grad y, +iy,(N*—grad? L)}
+7y4(N2—grad? L) —i(y, V2L-+2grad L.grad y,) + V2y, +O0(1/k) = 0. (4)

To satisfy this equation for large £ we equate to zero the coefficients of the powers of k.
From the first two powers grad’L — N? (5)

and div (y3grad L) = 0. , (6)

Usually the approximation is stopped at this stage because of the difficulty of calculating
results from the succeeding steps. Accordingly

Y=y e7* (7)

will be regarded as the solution to (3) in so far as geometrical optics is concerned.

Equation (5) is a partial differential equation for the eikonal L. The curves L = constant
are the wave fronts of the propagating disturbance. In many ways it is more convenient
to work with the rays rather than the wave fronts. The rays are the orthogonal trajectories
of the wave fronts and it follows without difficulty from (5) that they satisfy the ordinary
differential equations
4 (yd) 0N (0N "
ds\" ds dx’ ds\"'ds dy’
where s is the arc length along a ray. Once the rays are known L can be calculated because
of (5) and the fact that the rays are the orthogonal trajectories of the wave front. Thus

L:me (9)

the integration being along a ray. On account of this formula L is often known as the
optical path length of a ray; this terminology will be employed below.
The application of the divergence theorem to (6) in a ray tube shows that

¥4 Ndo = constant (10)

along a ray tube. Here do is the perpendicular distance between two adjacent rays. Equa-
tion (10) or the equivalent form (6) gives the intensity law for the amplitude y, of geometrical
optics.

Provided that the approximation is valid the problem of the solution of (3) has been
reduced to one of solving the ordinary differential equations (8). Since, in principle, this
can always be done (even though a computer may be necessary) it remains only to decide
the circumstances under which the process may be expected to be valid.

The approximation (7) consists of treating the field locally as a plane wave in a homo-
geneous medium. This will be reasonable, unless N is very small, provided that significant
variations of y, and L only occur over several wavelengths. It is well known (see, for ex-
ample, Jones 1962) that a layer of small N in a stratified medium reflects a wave perfectly
but provides, in addition, a phase change of 7. We shall therefore put this possibility on
one side. The approximation may also fail at a caustic where two adjacent rays meet for
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HIGH-FREQUENCY REFRACTION AND DIFFRACTION 345

then do vanishes in (10) and y, becomes infinite. However, for a region of several wavelengths
surrounding the intersection we can treat the medium as homogeneous and use the thorough
investigations of Macdonald (1913) on caustics in homogeneous media. Macdonald showed
how the field behaves near a caustic and also proved that, for points well away from the
intersection, the amplitudes on either side are related by the intensity law provided that
a phase advance of {7 is introduced for each crossing of a caustic. By using Macdonald’s
results it is possible to make suitable modifications to geometrical optics to account for
caustics.

‘"There is one further important case in which the geometrical optics approximation may
break down and that is in a region in which there is a sharp change in N. Then the gradients
of 7, and L will be large in general and the significance of the orders of the various terms in
(4) will be altered. The theory for this case is in a less satisfactory state than that for the two
cases just cited and the reasons why this is so can be seen from the particular model which
is studied in some detail in this paper. _

Before we turn to this problem, however, some formulae for a stratified medium will be
derived.

2. RAY THEORY FOR A STRATIFIED MEDIUM

In a stratified medium in which N is constant on parallel planes the y axis is chosen per-
pendicular to these planes so that N is a function of y only. Then the first equation of (8)

reduces to d dx
sWg)=o
Hence dx _ 4

where 4 is a constant, which can be taken to be non-negative if we limit consideration to

increasing x. Since s is the arc-length of a ray

‘ dy A2\}
@ ==(-3)

the upper sign corresponding to a rising ray and the lower to a falling ray. Hence the

equations of rays passing through (x,,y,) are

(12)

Y 4
x—xozifyo(—mdy. (13)
Clearly the rays are real only for N > 4. If at some point on the rays N falls to the value
A the slope is horizontal there and the ray turns from rising to falling or vice versa.
The optical path length is, from (9),
Y N2
L—Ly=+ " md% (14)
where L, is the value of L at (x,,y,).
With regard to the amplitude let f(x,y, 4) = 0 be the equation of a ray. Let 4 have the
value 4+04 on an adjacent ray. Then, if (x,y) and (x+ 80 cosf, y+dosinf) are the points
on the two rays separated by the perpendicular distance do we have

S(x+docosf, y+dosing, A+84) =0

whence do cosf 4 0o sin f o +04 U 0
ox dy dA4
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346 D. S. JONES
to the first order. Here f'stands for f{x,y, 4). Also

o g Uy
a—ycos/)’mg;smﬂ = 0.

since do is perpendicular to the ray. Hence

(6 Y s

- ) o oo

It follows from (10) that

where K i1s a constant.

For the rising ray y A
JExmn | st d
w (N )
¥ o, ¥__ 4 N
so that ox 1, ay - (NZEE)%’ ﬂ - —fyo (ﬁ;—sz_)% y
Consequent! K
onsequently 2 — (16)

(N2~—~A2)%‘

The formula is exactly the same on a falling ray.
Suppose now that there is a line source at (0, y,) which would produce a field

(3mk)* &4 H® (kNyr)
in a homogeneous medium where N, is the value of N at the source and ris the distance from
the source. For large argument the asymptotic approximation
2\t .
HP(x) ~ () eiecin
for the Hankel function may be employed. Thus a few wavelengths from the source a field
e~iNor[( N 7)* is produced. Since we are concerned with high frequencies in ray theory we
determine the amplitude so that a field e~#¥r/(N;r)? is produced near the source. Con-
sider a ray going down from the source. At a depth —dy below the source the square of

the amplitude is 1/N,7 or (1— A2/ N3)%/N,dy from (12). The difference in abscissae between
two adjacent rays at this depth is

A-+d4 A4 NEoAdy
. Y- pdy =
W3- (ro Y WAt Y T (-t
_ Ngoddy dy\ N,0Ady
so that do = (V3 a2)! ( ds) Ny A2
Consequently B 04
Substitution in (16) shows that on a ray coming down from the source
1
7= N? . (18)

(Ng— 42t (N2 42}

N2 Az)% y
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HIGH-FREQUENCY REFRACTION AND DIFFRACTION 347
The field due to the source is thus y;e~%*Li where, from (14),
Y N2
=—| 2 dy. 19
Li fyo (N2—A2)* y ( )

If at some level y = & we have N = 4 (18) must be evaluated as a limit as y — £ to give
the amplitude y,, at the turning point. A straightforward calculation reveals

NN,
7h Uv'gi A;'%‘); ) (20)

where N,, Ny are the values of N and dN/dy at y = £. In fact N, = 4. The abscissa x,, of the

point of turning is given by
h |
= f v 1)

and the ray rising from this point has equation

P4
Ay = [
i ap Y ) e

In view of the vanishing of N2—A4? at y = & it is convenient to integrate by parts before
calculating 9//d4 for (15). If this be done and substituted in (15) we find

l

(22)

1

2 __
T e 4 (Wi ) (o) (23)
where
o|_| N3 2a-N2 2A2—-N2_cl( 1 )d
24| | N N A N, (e dy (B
f 242 N2 d( . l
(N2 A2)%dy NN’

Hence the field on the ray rising from the turning point is y;e~¥Z where y, is given by (23)

and o

N2 v N2
L=| -———d f ———dy. 24
: n (N2—A42)3} Y+ n (N2—A2)% Y (24)
Obviously the process can be continued provided that there are no caustics present.

3. THE STRATIFIED MEDIUM WITH LINEAR VARIATION
Ray theory may be expected to fail when there is a sharp change in N. According to our
basic idea the effects should be dependent, to a first approximation, on the difference
between the curvatures of a ray and of the sharp change. The model selected for an examina-
tion of the phenomenon consists of a medium bounded by a straight boundary. The medium
will be assumed to have a refractive index given by

N2 = N3(1+qy), (25)

where N, and ¢ are positive constants. The sharp change will be represented by an opaque
boundary at ¥ = 0 on which the boundary condition is

Y|y + kN, k~3Zy = 0, (26)
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348 D. S. JONES
where Z is a constant which may be complex and
k = kN,/q.

The reason for the insertion of the factor k=¥ will become clearer later.
The equation to be satisfied by ¢ iny > 0 is

2y 0
agzﬁ 513 -E2NE(1+-qy) § =

except near the line source at (0,y,), (y, > 0) where a field e=#¥/(N;r)? is required. Here
N, is the value of N at the source and so is N, (1 +qy,)*.
According to ray theory, a ray coming down from the source will have equation, from (13),

24
= Vig [{N3(1+qyo) — A2 —{N}(1+gy) — 42} (27)
and will carry a field y,e~*Zi where, from (18) and (19),
2 242
L= — gz, (Vi +ay) —~A2}%—-{N2(1 +qy) ~A2}*
3N2 v V(1 +gy0) — Az}%Jr {Nz(l +qyo — 47}

2
= 5N [{N3(1+qy,) — A —{N3(1+qy) ~A2}%] +Ax, (28)

TNt qyo) — 24D {N3(1 -+ gy) — A2 — {N3(1+ qy) — 22 {N3(1+ qy) — AT
If N,(1+qy,)* > 4 > N, the ray turns at a height (42— N%)/N%q above the boundary y =0
and subsequently has as its equation

24
% =z LNVE( - ayo) — A%+ (NH(L+ qy) — 4%5) (30)
from (22). It carries a field y;e7#Li where, from (23) and (24),
Ly = gy LVE (L 90) — 4+ (N1(1 - qy) — 4] -, (31)
)2 — 3Niq
TN+ gy) — AZE N1+ gyo) — ABF] [{NF(1+qy) — ABH{N(1 + gyo) — 47— 47|
(32)

If A < N, the downgoing ray strikes the boundary and is reflected. According to ray
theory the field behaves locally as a plane wave and so will be reflected by the boundary
at an equal angle to the normal with the amplitude multiplied by the Fresnel reflexion
coefficient for such a boundary. Since the incident ray makes an y with the vertical aty = 0
where sin y = A/N, the reflected ray has equation

— o LV +g90) — A+ (V31 + qy)— 4} — 2N} 4%)] (33

and the appropriate Fresnel reflexion coefficient is

ik cosy+2Z ‘
R(v) = — 34
() = ikt cosy—2Z" (34)
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HIGH-FREQUENCY REFRACTION AND DIFFRACTION 349
Away from the boundary the reflected ray carries a field y, e~#Zr where
R(x)
= 35
T N A (N 4B a0 A T (38)
2
L, = gz, {VH( -+ ) — AP+ (VR +gyo) — A —2(NE =49 ] +4x - (36)

and f; is the right-hand side of (33).
The ray with 4 = N, is tangent to the boundary and has equation

gte = gi 4y, (37)

The mechanism for obtaining the reflected wave clearly fails for rays in the neighbourhood
of this one. Moreover, all the reflected rays described above lie to the left of the curve (37)

shadow boundary

idx=yt+ud
yA
gx = {(1+qy) (L+gyo)}t
caustic
(0’.’/0)
— -

Ficure 1. The rays from a source at (0, y,) in a stratified medium with linear variation.

(see figure 1). For this reason the curve (37) is known as the shadow boundary or horizon.
There is no means for determining the field by means of rays to the right of the shadow
boundary, i.e. in the shadow.

However, it should be noted that if ¢%yy, > 1, some rays can cross the shadow boundary
and intersect on a caustic with equation

3gx = {(1+qy) (1 +qyo)}

which touches the shadow boundary at y = 1/¢%,. Formula (32) is not valid near the
caustic; after the ray leaves the caustic (32) again becomes valid but the field must be taken
as y; e—ikLi+%7ri.

Hence when an opaque boundary is present, ray theory is inadequate to deal with the
field near and beyond the shadow boundary. In the next section the exact solution to the
problem is considered; in the course of the investigation confirmation of the formulae of
ray theory will be obtained.

44 Vor, 255. A.
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350 D. S. JONES

4, THE EXACT SOLUTION

Let ¥ — ® W elakNix dx,

Then d2W/dy?+ kN1 —a?+qy) V' = 0.
The transformation qy-+1—a? = Yk~ converts this to
d?¥/dY24+-Y¥ =0
which has the solutions Ai (Y e¥7i), Ai (Y e~#), Ai (¥ em) where Ai (z) is the Airy function;

it satisfies Ai” (Z) — 2 Ai (Z) (38)
An integral representation is

i o0 ed i

Ai(z) = —5- o edwt=zw qy (39)
which reduces to Al (x) = % f : cos (323 +x2) dt (40)
for real x. The Airy function is an integral function of z and has the asymptotic behaviour
Ai (z) ~§§%%T:%—§?—Z%2 {1 —{~O(l—;~l)} (largz| <), (41)
~ f;% {cos (3izt —17) +exp (|222]) O (l—;—l)} im<argz < $m) (42)

as |z| - o0.

From these asymptotic formulae it is evident that, as ¥ ->o0, Ai(Ye™) represents a
standing wave, whereas Ai (¥ e¥") and Ai (¥ e~¥7) represent outgoing and incoming waves,
respectively. As ¥ — —o0, Ai (Y e™) is exponentially damped whereas the other solutions
increase exponentially. Since the wave due to the line source must not be unbounded at
infinity and must produce an outgoing wave as Y - o0, the incident field due to the line
source is given by

W = BAH{A (14 gy —a?) e ALKE (1 4+ gy — %) e} (3 > o)

= BA{d(1+qyo—a?) e Ai {k} (1 gy —a?) e} (y <),
K Nigt -
The scattered field produced by the boundary y = 0 can be accounted for by adding
a suitable constant multiple of Ai{x*(1+gy—a?) e*m}. An inverse Fourier transform then
gives ¢.
The resultant formula is, for y < y,,

BEN, (> . o |
V= 2711]_ AL} (1 +gyo—oa?) edmi} [Ai {kF (1 + gy —a?) e}

Ry A (1 gy—?) Y] i, (43)
e Ai’ {k¥(1—a?) e} 4- Z Ai {k¥(1 —a?) e}

N Ro(q2) = — " , .
where 1(0?) AL {K§(1 —a?) e%n1}+ZAi {K%‘(l —a?) e%m} (44)

where

Tt is assumed that the denominator of R, does not vanish on the real axis.
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From now on it will be assumed that y < y,. There is no loss of generality in making this
assumption because the reciprocity theorem asserts that the field at y is the same as the field
at 7, due to a line source at y. It will also be assumed that x > 0.

Although (43) is the exact solution to the problem for all £ it is scarcely in a form which
is amenable to calculation. It is, however, suitable for calculating the high-frequency
behaviour. The condition for high frequencies is

kN g > 1.  (48)

5. THE METHOD OF STATIONARY PHASE

One method of evaluating an integral involving a large parameter is that of stationary
phase. In this section we shall consider the application of that method to (43).

The integral from —oo to 0 can be replaced by one from 0 to co with x replaced by —x
so that for the moment discussion of the integrand will be limited to & > 0. Since £N,/q
is large it is reasonable to replace each Airy function by its asymptotic formula except when
a? is near 1, 14-¢gy or 1+qy,. If each Airy function is so replaced it is evident that an
exponential is obtained which has the large factor £, /¢ in the exponent so that the method
of stationary phase can be applied. In the range «? > 1+ gy the first term of the integrand
is exponentially decreasing so that there is no point of stationary phase in this range. In
1 < a? < 1+¢y the equations for the points of stationary phase of the first term are

?
95 {3+ gyo— ) 31+ gy —a?)t—aga} = 0,

or 2a(1+qyo—a2) F2a(1 +qy—a?)t —gx = 0. (46)

The two signs have to be considered because of (42). With the upper sign there is one root
of (46) provided that 0 < gtx < 2(1+gy)* (y,—y)*. This corresponds to the downgoing
incident ray before it turns, (46) being the same as (27) when « is replaced by 4/N}, and the
contribution from the point of stationary phase is found to be y;e~%*% where y; and L, are
given by (29) and (28).

With the lower sign of (46) there is one root provided that ¢tx > 2(1+¢y)? (y,—y)* and
qyo < 1. This corresponds to the incident ray rising from its turning point, (46) being the
same as (30) if a is replaced by A4/N,, and the contribution from the point of stationary phase
gives y;e~%Li where y; and L, are given by (32) and (31). However, as the point of observa-
tion approaches the shadow boundary from the illuminated region the point of stationary
phase approaches ¢ = 1. Since « = 1 is the lower limit of integration the standard method
of dealing with a point of stationary phase is no longer applicable and another process
must be adopted. This point will be returned to later on. ‘

When gy, > 1 the situation is unaltered if y < 1/¢%,. If, however, ¢*yy, > 1 there is
one root of (46) with the lower sign when (1+gy)? (y,—y)? < i¢tx < y* 1y} (this gives the
incident wave above) and two roots when y+y§ < 3gx < {(1+qy) (1+qy,)/¢*. The
greater of these roots gives the direct incident ray as above and is not near a = 1 except
possibly for g%y, ~ 1. The smaller gives a ray which has passed through the caustic and
reproduces y;e~#Zi*37i where y; and L, are given by (32) and (31). As the point of obser-
vation approaches the caustic the two roots come together and the third derivative approxi-
mation in the method of stationary phase must be employed. This leads to an Airy function

44-2
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expression for the behaviour near a caustic as in Macdonald (1913). As the point of obser-
vation approaches the shadow boundary the lower root tends to « = 1, and once again the
range of integration for the method of stationary phase is incomplete.

In other words, if gy, > 1, any point in the region to the right of the shadow boundary
and to the left of the caustic receives two incident rays, one direct from the source and one
via the caustic. The direct rays go straight across the shadow boundary. For the rays from
the caustic the shadow boundary forms a natural boundary on the left.

In the range o? > 1 the second term of (43) has no real point of stationary phase.

In the range a? < 1 use the relation

Ai (zem) = el Aj (zebm) L e~ Aj (z e3) (47)
with the net result in (41) that Ai (ze™) and e Ai’ (ze™) are replaced by e~# Ai(z e~#7)
and e~¥1 Ai’ (ze~3), respectively. With (43) so modified the first term has one real point

of stationary phase for a2 <1 which provides a downgoing incident ray which strikes
the boundary. The second term has one which satisfies

J g
(~ (1 agp— oA =31+ gy —a) - §(1— ) —aga} =0,

da.
or 20(1 -+ qyo— )t +20(1 + gy — )} —da(1 —a?)t —gx = 0 (48)
1 254
since Ai' (z) ~ »—if—)%%ﬁgj {1 +0 (l—}‘)} (largz| < m) (49)

2 :"T:m {sin (% zgmiﬂ) Fexp (|22H) O <l71|)} (%ﬂ< argz < %’1) . (50)
Equation (48) becomes the same as (33) on putting a = A4/N, and so this point of stationary
phase supplies the ray reflected from the boundary and reproduces (35). As the point of
observation approaches the shadow boundary the point of stationary phase approaches
@ = 1 and the process breaks down.

Consequently, the replacement of the Airy functions by their asymptotic forms and the
use of the method of stationary phase reproduces the formulae of geometrical optics plus
details of the behaviour near the caustic when it is present. No information is obtained
about the field in the shadow or near the shadow boundary. Therefore alternative methods
of evaluation must be used in these regions.

6. EVALUATION BY RESIDUES

Since the Airy function is an integral function the only singularities of the integrand of
(43) are simple poles where

edm Al {k¥(1 —a?) e¥mi} + Z Ai {k¥(1 —02) e¥7i} = 0. (51)

Let & (s =1,2,...) satisfy A’ (8)+Ze AL (S,) = 0; (52)
then the roots of (51) are given by « = 5, where

p2 =148 e ¥k, (53)

One reason for the insertion of k=¥ in (26) is to obtain the comparatively simple form of (52).
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The roots of (52) have been discussed in some detail by van der Pol & Bremmer (1939),
Fock (1946) and Franz & Beckmann (1956). If Z is large, d, ~ a,e™ where

Ai (¢ em) = 0. (54)
If Z is very small §, ~ f,e™ where A’ (f,e™) = 0. (55)

Both «, and f; are positive and lie between 1 and 10 for 1 < s < 6. Therefore, from (53),
for these extreme values of Z there is one set of poles starting near 1 and going along the
direction e~#7i. There is a corresponding set in the second quadrant. We assume that the
behaviour is similar for intermediate values of Z. For large values of s (49), (50), (41) and
- (42) show that the derivative term in (52) dominates so that §, ~ §, e for large s and the
corresponding poles are asymptotic to --ff e~#rig-t,
Deform the contour of (43) into a large semi-circle in the lower half-plane together with
a loop round the poles. The contribution of the semicircle tends to zero as the radius

increases provided that x| > 34 (y+y,)- (56)

It is helpful to use the modified form of the integrand described in the preceding section
Jjust before (48) on the semicircle where —n < arga < — 7.
Hence o BN, S em A’ (8, e¥m) + Z Al (5, ebri)
2ct Sy, e¥ALY (0,) +Z AT (8,) edriy,
X Ai{k}(1+ gy —12) €3} Ai {k¥(1 4 gy —9?) ebri} e-inskis

when (56) is satisfied. This expression can be simplified somewhat by using (38), (52) and
the Wronskian
et Al (zedm) Ai (z em) —etmiAi (zedmi) Al (zem) — —i/2m. (57)
The result is
g = (2771?)% ehris AL (Lt gyo—0d) YA (L gy —nd) et} o,
d s (22—5, ) (AT (8,7
If Z = 0 replace Z/Ai’ (3,) by —e#i/Ai (4,).

It should be noted that (58) is valid without restriction on frequency but subject to (56). The
region of validity does not include the whole shadow zone but may include part of the
illuminated region. A possible case is illustrated in figure 2. Far enough into the shadow
(58) will certainly hold.

Formula (58) could also have been obtained direct from the differential equation for
¥ by the method of separation of variables. The fact that it is valid only when (56) is true
indicates that separation of variables must be used with circumspection in inhomogeneous
media (see also Marcuvitz 1951).

For the early values of s 7, is of the order of unity and the arguments of the Airy functions
in (58) are large unless y or y, is small. The Airy functions may then be replaced by their
asymptotic forms. This will certainly be true if

qy > |0,] (g/kNy)* (59)

(58)

for the smaller values of s.

Then . (_/i)% (l)ﬁﬂ Zzexp{__ikLJr%iKigse—éniqu/M} (60)
81/ \k/ (gPyyo)t =1 {220 et} {AL' (8))) ’
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354 D. S. JONES
where L = N{x +3¢ (i +yh)l, (61)
L, = Ni{x—2¢~ (4t +3)}. (62)

The procedure for going from (58) to (60) is not, of course, valid because, for fixed gy,
the inequality (59) is bound to be violated when s is large enough. Indeed the infinite series
(60) converges exponentially, at any rate when Z is zero or infinite, when L, > 0, i.e. it
converges in whole shadow, subject to (59), except near the shadow boundary L, = 0.
Well into the shadow (58) and (60) are in agreement in the sense that only a few terms of
either series are necessary there and the approximation made above is valid for these terms.
We could attempt to prove (60) by showing that the infinite semicircle used in deriving
(58) provides an infinite contribution, where (60) converges but not (58), which cancels
the infinity in (58) to provide (60) but we shall not do so.

shadow boundary ¢tx = y% +!/6%
yh |

x = 3k(y+y,)

B 17

Ficure 2. The method of residues gives the field in the shadow to the right of the straight line.
The exponential decay depends upon L,, the distance travelled along the boundary.

Formula (60) forms the basis of Seckler’s & Keller’s (1959) theory of diffraction. In this
theory a point in the shadow is assumed to be reached by a ray which consists of the incident
downgoing ray which touches the boundary, the upgoing ray which touches the boundary
and passes through the point of observation, and the portion of the boundary between the
two points of contact. It may be verified from the analysis of § 3 that L is the optical path
length of such a ray, L, being the optical path length of the boundary portion. The occur-
rence of L in (60) accounts for the normal phase variation along a ray. With regard to L,
it is assumed that a fixed amount of energy is brought along the incident part of the ray.
It steadily diminishes in travel along the boundary because energy is carried upwards by
each of the tangent upgoing rays. Therefore the amplitude at the point of observation is
exponentially decreased by an amount proportional to the length of boundary which has
to be covered.

If (60) be accepted the results of this and the preceding section ensure that the field is
known everywhere except in the neighbourhood of the shadow boundary. The problem of
the shadow boundary will be considered in later sections.

Before turning to this we note that, for

o > 10, (q/kN,)? (63)
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the field on the boundary y = 0 according to (58) is

g (}_ &)% 1 5 Z2exp {—ikL+Lik¥d e~¥7igL, IN;} Ai (5,) (64)
26] (gyo)t s (22—, ebm) {A" (3,1 ’
i (1)t L edri | Z2exp{—ikL+ ik}, e diqL, IN}} (65)

ay = BT T (s, ot AT (5)

which satisfies the boundary condition (26) when account is taken of (52).

7. EXTRACTION OF THE EXPONENTIALLY DAMPED PART OF THE FIELD

The first step in finding the field near the shadow boundary is to isolate the most sig-
nificant parts of (43). In the first place we shall split off the parts which are exponentially
small at high frequencies whether the point of observation is near the shadow boundary
or not. It will, however, be assumed that (59) is valid in the form

gy > (g/kN)*. (66)
On account of (41) and the Airy function being an integral function there is a K such that
Kexp (—§4%)

4i () < KORED (o), (67)
|Ai(xe*"i>1<—1—§;c; (x> 0), (68)
i (eety] < KEBREE) (o< ). (69)

Because of (67) and (69)

f ) Ai K3 (1+qyy—a2) e} Ai {kB(1 + gy —a2) emi} e-iskNiz dy
(1+qyo)?

o0

<" exp [3r{(02— 1 —qyo)— (22— 1 gp)})] da

(1+qyo)?
< K2exp {~ Vg (109"} | exp{— JkN,a(yp—y)} da

= Olexp{—§kN,¢*(yo—9)¥]
since ¥, > y. Let ¢ = (kN,/q)~#" where 5 > 0. Then, from (67) and (68),

(1+gyo)? ) o o

U Ai {kt (14 gyo—a?) ¥} Ai {k¥(1 4 gy —a2) emi} e-ivkdiz dg
(1+gia+ert

(1+qyo)?

< exp{—§(— 1 gy)
(L+gy)¥(1+e)?
= O[exp {—«et}]
— Ofexp (—#t)}.
On account of (49) there is a constant K such that

AL ()] < Ky(1+at) exp (—3ad) (x> 0).
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Since it has been assumed that the denominator of the second term in (43) does not vanish
on the real axis there is a constant K, > 0 such that

e} Al (xe¥m) + Z A (xedi)| = Kyexp (3 |x[) (2 <0).

Consequently
@ e Al {k¥(1—02) e} - ZAi {kF(1 —a?) e™} ., o
P 2 _A i1 w2\ a7 a—iakNix d
f(quo)% e%nlAlf{K§(1 _“2) e%ﬂ1}+ZAi {K%(l —~oc2) e%”‘} I{K ( +qy—ao ) € }C &

= Ofexp (3£, ¢H{(yo—y)t—295}) .
The integral over the interval from (14 gy)? to (1+qy,)* is Ofexp (—%kN, ¢*y*)} and the
integral over the interval from 1-+¢ to (1--qy,)? is Ofexp (—«¥)}.
If x is replaced by - x the above results are not altered. Therefore, if exponentially small
terms are neglected,
4 E 3
v = BkN J‘(l Fqy)H(1+e) lAi {K%(l 4 qyo—a2) ebmi} A {K%(l | gy —a?) em} e~iekNix dg
(1+qy) (l+6)2

BkN

f R, (a2) Ai {k¥(1 -+ qyy—a2) b} Ai {k5 (1 + gy —a?) edi} e~ Nirdg.  (70)
2 (1+e)}

This formula is valid when the conditions (45) and (66) hold. The correction term is con-
veniently written O{exp (—«¥)} on imposing the restrictions

q(yo—y) > 26, qy > e. (71)

8. THE INCIDENT FIELD TERM NEAR THE SHADOW BOUNDARY

We turn now to a more detailed discussion of the integrals in (70). In order that the
examination shall be as general as possible restriction to the neighbourhood of the shadow
boundary will be avoided as far as possible. However, near the shadow boundary two
simplifications are helpful, namely, that L, ~ 0 and L ~ L, as can be seen from (31) with
A ~ N,. This section will be concerned only with the first term of (70).

Now

(+gy)¥1+e) - o
f AL {3 (1 + gy, —a?) e} Ai {kB (1 -+ gy —a?) e} e ikNir dy

e
= +0 — }
1 2m k(1 + qyo—a2)t edsm k314 qy,— a?) ebr

X AL {Kk¥(1+ qy —o?) e} e~iekNix dg (72)
from (41). Ignoring the order term for the moment and putting «? = 1+ gy +/f we obtain
J‘”‘””G exp [—ik{ (a0 —ay— )+ (L +ay A1 o (1) ap

~qy 47’%’&(9% qy — ﬂ)éeﬁm(l”qu"{pﬂ)%
_ Kb pUtae Jw exp [ —ix{3(qyo—qy— )+ qx(1+qy+F)* + 50+ ful] dudp
Frl R (40— qy—B) (Lt qy-+h)tenm ’

from (40). The asymptotic behaviour of such double integrals has been discussed (Jones &
Kline 1958) and it has been shown that the behaviour is dictated by the critical points in
the area of integration. The critical points consist of the points where f, given by

= —3(qyy—qy—P)}— qx(1+qy+ )t — 4u® — pu,
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is stationary and the boundary points where a curve f = constant is tangent to the boundary.
The stationary points of f are given by

(gyo—qy—PB)t—4gx(1+qy+p) " —u =0, (73)
w24 f = 0. (74)

Equation (74) shows that # < 0. If we putu = (—f8)* in (73) we recover (46) with the upper
sign and a2 = 1+4-gy-+f; on the other hand u = — (—f)? gives (46) with the lower sign. The
stationary points therefore are precisely the same as those given by (46) and, when they
are present, supply the field of geometrical optics unless they are near the boundary of the
area of integration. According to the theory of Jones & Kline the next term in the asymptotic
expansion is lower in order by the factor 1/k. Since such a factor is negligible in comparison
with the order term in (72) there is no point in taking more than the first term of the asymp-
totic expansion. If the stationary point is near the boundary this theory does not hold and
further consideration is necessary ; this can happen only near the boundary f = — gy (¢ = 1)
since f < 0 at a stationary point.
Turning now to the critical boundary points we write the integral as

(1+gyle oo .
[T atbw evapau.
-y V-
Then the contribution of a critical boundary point (f,, #,) (assumed to be non-stationary) is

g(Bos uo[) (ﬂl‘* ;;13 iz;-?;i +if(fpu)} | o (Kl%)

2 auz B=Bo,u=up

with the understanding that §%f/du? = |0%f/du?| e™ when it is negative. Now the curve
f = constant is tangent to the boundary f = constant only if (74) is satisfied. Hence the
critical boundary points are (fy, (—f,)}) and (f,, — (—f,)}) where f, = —gy. Their contri-
bution to the integral is

expliri—iege—fic(ay}  exp(~dicla)’) _icxpic(a’) -
(

8mit(qyo)t (g9)* gyo) -+ (gt — g% (g90)*— (qy)t —dg’

Consequently the value of (72) is the geometrical optics field provided by the interval
plus (75) all multiplied by a factor which is 1+ 0(1/k¥q(y,—y)) or 1+0(1/k7) at worst.
Unless y is close to y, it can be taken as 1+ O(1/k%) effectively and it will be written in this
form from now on. If there are no stationary points the value is (75) only. The case when a
stationary point is near @ = 1 will be dealt with later.

The interval (—(1+gy)* (1+¢€)}, —1) gives similar results with the sign of x reversed.

In the interval a? < 1 we use (47) in (70). The modified first term is

1 . .
f Al {K# (14 qyo—a?) e¥mi} Ai {k(1 + gy —a?) e ¥} exp (— ini—iakN, x) da
-1

::fl exp {— %ik(1+qy,—a2) ¥+ 2ik(1 + gy —a?) ¥ — ik Ny x — %m}{ +0( 1 m)}da
-1 amkd(1+ gy —a2)t (14 gy —a?) k(14 gy —a?)
(76)

45 VoL. 255. A,
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Theorems concerning the asymptotic behaviour of integrals of this type have been given
by Erdélyi (1955). An interior stationary point provides the geometrical optics of incident
rays going down to strike the boundary plus a correction which is O(1/k) smaller. If the
stationary point is near the end of the interval the theory does not apply but since this
does not occur near the shadow boundary we shall not consider the matter further. The
contribution of the end-points is

etiexp [ik{—%(qyo) +3(gy) +gx}]  exp [dmi+in{—3(qyo)* +3(gy)? ~qx}]

amit (qyo)t (qy)H{—2(qyo) +2(qy)t —gx}  4mct(qye)* (q9){2(qy0) —2(qy)t —gx}

Combining this result with (75) we see that the contribution of the first term of (70) (with
the change described just after (44)) to ¥ consists of

. N;} elni e—ikL  @—ikL ~
I:)’ze ek — (2mc)t q(yyo)i{ I, +~fbw}:l [1+0(k )], (77)
where L and L, are the same as L and L, respectively with —x in place of x. The geometrlcal
optics field y; e~ is of course absent in the shadow.

There is one exceptional case when (77) is not valid and that is when, as mentioned above,
a solution of (73) and (74) is such that # ~ —qy. The root u = (—§)* provides a stationary
point which is also one for (76) but just outside the interval of integration. When these two
integrals are taken together the contribution of an ordinary stationary point, 1.e. geometrical
optics is obtained. The root # = — (—f)}, however, has no connexion with (76) and must
be examined separately. It arises only when L, ~ 0, i.e. near the shadow boundary. In
that case split the interval of integration in (72) into

(L (146t and  ((1+6)f, (1+gy)t (1+e)h).
Deal with the second interval in the same way as (72) was dealt with. In place of the first
end-point term in (75) (which in fact becomes infinite as L, = 0) we obtain
exp (3mi —ixgx(1+ )} — Fic(gyy—e)!— Bix(gy )"} 8)
8kt (qyo—e)t (g7 —€) {(ayo—€)} + (qy— ) — hax(1+¢) 4}

In the remaining interval the relation (47) can be used and the second Airy function
discarded since it gives rise to the root z = (—£)* mentioned above. The other Airy function
can be replaced by the first term of its asymptotic expansion so that

J*(He)*exp[__l/({( +qyo— 052)%+(l—l—qy 062)%4“ qax}+37fl]{ +O( ,,w,l )}doc
. 41r/<‘5‘(1 +qy0——oc2)*(l+qy az)%eam K%( )

14 qy—a?

is obtained. The substitution a? = 1/ gives, neglecting the order term for the moment,
fﬁ exp [—3ic{(gyo—A)*+ (ay =)} +3qx(1 +4) )+ 4mi] 4
0 81k} (qyo—F)* (qy—F)* (1-+5)

_ ¢ exp {—1kL —4ikL,f— HEL,f*+ {ni}
fo 8mi?(q2yy,)? {L+0(...)}dp, (79)

where L, = (M/q) {(qy) ¥+ (q95) F —$gx}



http://rsta.royalsocietypublishing.org/

/.
/ B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

HIGH-FREQUENCY REFRACTION AND DIFFRACTION 359

and the dots in the order term indicate terms such as g, f/qy, «f*. Since, for L, > 0

€ 1:272 el +Lp) (k[LpDY |
[* exp (~bikL, g gibL, ) dp = 2P URLGILY) (HETEERT ooy
0 (kLl)% 3Lp(k/ Ly}
) e—ia? 1
e-if? - €
and, as a o0, J ) dg = 5 +0 (a3) , (80)

the value of (79) is
epIHEAYL) L} (7 ipqp foxp (CHkLetLIL) ]
- e ifdf+ 1+ 0%
@ () Vinomn™ P8 WL (et ) 10O
provided that L;e+ L, > 0. Combining this with (78) the total contribution to ¥ in this
case from the interval @ > 1 is
exp {3m —ik(L— 1«L2/L
(2mLy)? (q%yyo)?
The same formula is true for L, < 0 and L,e+ L, < 0 provided that L, is then understood
to mean |L,|e™. Since L, ~ 0, L, > 0 implies that the point of observation is below the

point where the shadow boundary and caustic touch whereas L, < 0 means that the point
of observation is above the point of tangency.

0} f € A OG), (81)

9. THE REFLECTED WAVE TERM
- We turn now to the second integral of (70). We have

(1+e)?
f Rl'(ocz) Ai {Kg(l +qy, —052) e%ﬂi} Al {K%(l +qy— 6!2) et} e~iakNix dy
1

:f‘”e’*Rl(aZ) exp [ —ik{3(1+gy,— )} +3(1 +qy-a2)*+aqx}]{1+0( 1 )}da_
dmt b (14 gy —o?)# (1 gy —a?)t «}(14-gqy—a?)

Ignoring the order term and putting o2 = 1+ § we obtain

R(Hﬂ exp [ —ic{&(gyo—A) + 3@y —F) + (1+£) 453] 4
smct et (qyo—p) (gy—F)t (1+4)*

R,(l+ﬂ)exp (—ikL—}ikL,p) . ,
[ A ot

where the dots in the order bracket indicate terms such as f, f/qy, k#®. Since

[ Ru(1+4) (1~ FikL,g2) e sa8 ap — [ Ry(14) (1AL, ) e-b9 4+ Ofexp (— i)}

our final result is
| eth e enAY (§) +ZAi (1)
8mk(g?yyo)t ) o el AL (ue ) + Z Al (ue i)

x(1-3 %’Lﬁi 42) exp (— HAL,uich) du1 -+ O(-h}.  (s2)

There is also exactly the same contribution from the interval (—(1-+¢)¥, —1) except that
the sign of x is reversed.
45-2
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Now consider the integral in a? < 1 with the modification due to (47). Itis

1
f R,(a2) Ai {k¥(1+ gy, —a2) edi} Ai {k3(1 + gy — a?) €bmi} e~iehix dg,
-1

(i:%ﬂ'i Al {kB(1—a2) e~ ¥} Z e Af (i} (1 —a2) e~bmi}

h Ry(@?) = ———¢; ' '
where o(a?) REYNT {/c%(l — ) e‘}"‘}+ZAi {K’%(l —a?) e%m}

In the interval {— (1 —e¢)?, (1—¢)*} asymptotic formulae may be employed to give

fme)% e—ini K%(l —a?)t-Z
~1-0t Z—ebmigh(1—a2)}
exp{—§m~——~1/<(1+qy —02)¥—2ik(1+ gy —a2)t —iak N, 2+ ik (1 —a?) ¥}
amct(14gyo—a?)t (14 gy —a?)t

efrro (gt

A stationary point in this interval provides the waves reflected from the boundary by the
laws of geometrical optics. The contribution of the end-points is

_Z—*—iK%(‘,‘% exp (——— %ﬂi—*—%i/(eg) ]V]
Z kbt amikq(qy,y)t
[ L) exp (L i) (1 =BT oxp (LT, gy
—L,— 46t N,/q (Ly+3Ly) e—L,+ 462Ny /g

where L, L,, L, are the same as L, L,, L,, respectively, with x instead of —«.
With regard to the interval ((1—¢)%,1) put «> = 1—# to obtain

. —§mi—ic{3(qyo+ )+ 3(qy +£) P+ (1—F)gx}] 1
R 1—,6’ exp[ g7 lK{g(qyo 3 {1+0(_———~)]dﬁ.
f ol =) smct(gyo -+ (gy+5)t (1—5)} <Hay+f)
Ignoring the order term for the present the integral can be written

[[r—p U=t tn MEZAL0N 0 o )

where the dots in the order term indicate term such as f, f/qy. Now
Z+ik%et N, exp (—fmi+§iced 4 FikLe)
—ixdet Likq(4N,et/q+L,)
84)

provided that gL, 4N, ¢t > 0. If gL, +4N, ¢t < 0 there is a contribution from a stationary
point in (¢,00) to be subtracted. Also

f Ry( e;k(%Lbﬂ) dg = f elk(% Lof) d /,’__

[ Rir=p)preimsondp = — s [ Ry(1— ) v ag

02 Z+1/< et 62N, exp (— &mi+ ik + JikLye)
== 1— 3ikLop "3 2Ly
(kL) f Ry(1=f)e - —ik¥et 3ikq(4Ne* g+ L)

» (85)

together with a contribution from the stationary point if gL, + 4N, ¢* < 0.
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HIGH-FREQUENCY REFRACTION AND DIFFRACTION 361

The first term in the brackets of (83) cancels the sum of the last terms of (84) and (85).

Hence the net result of the integration over the interval (—1, 1) is to provide a contribution
to ¥ of

; BkN, e-tni . . 92 o ’
,_.lkLr l_ —ikL l v N —%ucL ﬂ
P s (gt R g [ R P e

e W1 B g ol [ RA1-) B0 dB (110D (86)

with the understanding that the contributions of the stationary points in the integrals are
to be deleted when ¢L,+4N,et < 0. The term y,e-Lr is the wave reflected from the
boundary according to the laws of geometrical optics and is non-zero for gL, +4N, et < 0.

Combining (81), (86) and the term in (77) left by the process leading to (81) we obtain
for the field near the shadow boundary ¢L,+4N,et > 0 and below the caustic

=P {—dm —ik(L—3L3/L,)} fw e-if? df— N} etni-ikl
(QWLI)% (quyO)i: Lp(k/LDE ot ﬂ’}"K%g‘}(qzyyo)i“zb

b 1ikL, .,

2irkq%:Ne§*( [G{%kL _§}+ : 1 G"{3kL, K"g‘}]
%e ikL IICL ’ .

251551\7% (v )i[G{lkL —§}+“*“IG {3%L,« 3}] (87)

where
G(’T) _ e~TEm o em Aj (ﬂ) +ZAi (/‘) e-iur du

amt Jo b Al (u e—%ni) +ZAi (u e—%wi)

e~ o a—imi A/ (u Cehi) +ZAi (ﬂe—%ﬂi)

"o o €AY (uedm) + Z Ai (uebri)

errdu  (88)

and G"(1) = d?G/d72. The whole of (87) is multiplied by 1+ 0(x~%).

In the shadow the first two terms of (87) are replaced by (77) with ¢; absent. In the
illuminated region the first two terms of (87) are replaced by (77), ¢, is added and the
convention on the stationary points in G is adopted.

Thus the field has been obtained everywhere, except in the caustic region, with a relative
error of O(k~%). The formula (87) will now be simplified.

10. A SIMPLIFIED FORMULA FOR THE FIELD

In deriving a simplified version of the field various results for the function G are used;
they will be found in appendix A and reference to equation (5), say, of that appendix will
be denoted by (A 5).

First note that $4L,x~% < — %! since only the case x > 0 is being considered. Therefore
the asymptotic formula (A7) and (A 9) may be used, the first term of (A 7) being omitted
in view of our convention on the stationary points. Thus

1ikL

% a—1ni
G(RRL, k%) + 3 =51 G (AL, k) = Kﬂ © 1ok, (89)

YL,
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362 D. S. JONES

The substitution of this result in (87) provides a term which cancels the second term.
Consequently (87) reduces to

_exp {fmi—ik(L—1LYL))} (*

= ...iﬁzd
4 (27Ly)* (¢%yo)* VoL 4
} a—ikL kL
AT eTe VY e W VL ~%] 90
STyt O )+ L G L | (90)

In the illuminated region the first term is replaced by the first two terms of (77) and
y, e #Lr is added. In this region (89) may be used with L, replaced by L,. The result is

= ey, kI Ok, (o)
In the shadow the first term of (90) is replaced by the second term of (77). The expressions
(A 5) and (A 8) can be used with the result
= g* exp (—q%m—ikL) o Z2(1—ikL,82e~¥mi/4x?) exp (4i0,kL, k¥ e i) L0 (_1_) (92)
BTN (yy)t S (22— b, ¢%) {Ai (6,)}2 k)

It may be anticipated from the results of § 6 that the order term in fact contains an ex-
ponentially damped factor.

Now let us consider what happens to (90) as L, increases in magnitude from zero. When
it is sufficiently large and positive we can employ (80), (A 5) and (A 8). Equation (92) is
at once recovered. On the other hand when L, is sufficiently negative the formula

® i g — b et € -3
J.wae df = rte-tri -S4 0(a~) (93)
and (A7) can be used to give

v = exp{—ik(L—1L}/L\)} Z—{ikLyk*

% (—L )%q%exp (—ikL+-45ikLi*N})
(2L1)1} (‘]2%/0)1k Z+iikLbK—§ v

AL HOW:

- (94)
In deriving this the first term of (A 7) was retained (contrary to our convention). The term

G" plays no part since (with our convention) its contribution would be contained in the

order term.
Near the shadow boundary and below the caustic (32) gives, since 4 ~ N,

1ad
7;2 = I 24
Ny(yt+yp) {1~ (g990)*}
1
= (95)
2L,(g%yo)* v
since L, is small. Also by expanding (30) and (31) in terms of 4— N, about 4 = N, we find
L, =L—1L}L,. (96)
Similarly, from (33), (35) and (36)
L, = L—g?L}j96N%, (97)
cosy = —qL, /4, (98)
2 =B Ly (99)

16N gyt
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HIGH-FREQUENCY REFRACTION AND DIFFRACTION 363
On using (95) to (99), (94) can be written
» Y = ppo gy, e O ). (100)

Although as L, becomes increasingly negative, (94) does not coincide with (91), if converted
to the form (100) before L, becomes too negative it gives the correct field in the illuminated
region. By this means (90) may be employed to give the correct field everywhere.

The formula takes a conveniently simple form if the approximations (95) and (96)

are used. Then
eiﬂi o

T3 e—ikL
V=g i
m

Y
-z " 2HI N (yy,)
In this formula ¥; is the incident field y; e~¥#%i as given by the formulae (31) and (32) of
geometrical optics. The square root (L—L,)* is taken to be positive in the shadow and
negative in the illuminated region. The function G is defined by (88) and the convention
on the stationary point is dropped so that for large negative 7 (A7) in its entirety is used.
Then (101) gives the field everywhere below the caustic provided that one starts at the
shadow boundary (L = L;, L, = 0). As one moves away towards the illuminated region
(101) soon takes the form (100) and from then on (100) is employed. As one moves away
towards the shadow (101) soon takes the form
)= (_/c_)% exp (—ggm—ikL) (. Z%exp (%ikl,'bb‘s e~mi %)
sn) T )t 5 (22,6 (AT (3P
e~ikL e—tni
= OB i i, — AL (103)
and from then on this form is used. :
Note that (102) reproduces (60). Moreover, since G(0) certainly exists, (A 5) shows that
this field becomes infinite by the factor 1/L, as L, — 0. Thus the Seckler & Keller theory of
diffraction can be valid in the shadow only where kL, «~ is large.

G(3kL,x%) + 0 (k). (101)

+0(xk %) (102)

11. INVARIANCE UNDER CONFORMAL MAPPING
Formula (101) gives the field everywhere below the caustic. In this section it will be
rewritten so as to retain only those features of our model which are applicable to other
media and other boundaries. In this way it is hoped to derive a formula for the field of wide
applicability.
First, note that on the ray from the source which just touches the boundary

7= (39/M)¥/(gy0)*
at the boundary. Denote this by y,. Similarly, a source at the point of observation would

produce an amplitude at the boundary on the ray of glancing incidence of (4¢/N,)}/(qy)};
denote this by y;.

Secondly, the radius of curvature g of a ray is given by
1/jo =n.gradln N, (104)
where 1 is the unit vector normal to the ray. For the particular medium under considera-
tion the radius of curvature of a rdy of glancing incidence is

1 9 1
§-9§hlAr-§q

at the boundary.
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364 D. S. JONES
The formula for ¥ may now be written
elni o . LY 4 Y2 €T 3
=y, -t df— (3oNN,)b Ta¥sV2 e G{ KL, ( )} 105
=y [ e A (o) T G L (7 (105)

This formula has the advantage that it carries no specific reference to the particular medium
under consideration. Itinvolves only optical path lengths, amplitudes, the refractive index
and radius of curvature at the boundary. Itis therefore possible that this formula is of wide
applicability.

To examine this possibility make the conformal mapping w = f(z) where w = u-iv
and z = x+-1y. The equation (3) becomes
where N = N |dz/dw|. Thus the effect of the conformal mapping on (105) is to provide
a field in a different inhomogeneous medium satisfying the transformed boundary condition
on the image of the boundary y = 0. Now optical path length satisfies

L:des :JNIdzl
:fN]dz/dwl |dw)

— [ |dul
— [,

say. Thus the curves L = constant become the curves LY = constant and, furthermore,
grad®’ L® = NO* where grad® is the gradient in the w-plane. As a consequence wave-
fronts are mapped into wavefronts and the rays, their orthogonal trajectories, are mapped
into rays on account of the conformal property of the mapping. Hence optical path length
is invariant under a conformal mapping. Also, if ds is the perpendicular distance between
two rays, Ndo transforms into N®Mdo® so that the amplitude of geometrical optics is also
invariant under a conformal mapping.

Hence the effect of a conformal mapping on ;, L, L,, y, and y; in ¢ is to replace them by
Py, LO, LY D and 940, respectively, where these quantities are calculated directly in the
new medium, the amplitudes being produced by a line source which produces a field
exp (—ikN§PrO/(NPrD)¥ at nearby points. (The affix (1) always indicates quantities in
the w-plane.)

With regard to the radius of curvature of a ray

/o =n.gradln N
_ fda
~ldz

dw dz
= == n 8 [0y Mn ==
.dzln .{grad In N®—grad lnldw!:.

n®. grad®In N
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HIGH-FREQUENCY REFRACTION AND DIFFRACTION 365

Now |dz/dw| can be regarded as the refractive index in a medium obtained by conformal
mapping from a homogeneous medium. In such a medium y = 0 would be a ray and so
the boundary in the w-plane would be a ray so that n.grad®In |dz/dw| is the curvature
the boundary 1/p{". Hence

11 (1 1
N~ W g g
An immediate deduction is that 1/Np is an invariant of a conformal mapping where

11t (108)

poe o’

where g and g, are the radii of curvature of the ray of glancing incidence and boundary
respectively, N being the refractive index at this point. The radii of curvature p and
o, have the same sign when the centres of curvature are on the same side of the tangent at
the point of glancing incidence, being positive when the centres of curvature are on the
same side as the inhomogeneous medium.

It would not, however, be correct to replace 1/Np in (105) by 1/N,p, (the suffix 4
indicating values at 4) because this would allot a special position to 4. On account of the
reciprocity theorem that the point of observation and source can be interchanged without
altering the value of the field 4 and B must appear symmetrically. Therefore N, is replaced
by (Nyps Nyps)?.

Finally, there is the question of the term L,/(N,0)¥ in (105). Itis due to this that the field
is exponentially damped in the shadow. The replacement must be representative of the whole
stretch of boundary that is involved and accordingly we employ

? 3
[ My,

where [ denotes arc length along the boundary and N, p, are values at the point where the
arc length is /. Written in this form both numerator and denominator are invariant under
a conformal mapping.

With these replacements (105) becomes

. Ny Nppapp)t _ 3 N,d!
1ﬂ2d ( ALYBIYAPVB) 1kLG{ k ! } 107
f{k([r-l,,)}* /)) (lk)% '},A '}IB ( ) (]V'lpl)§ ( )
which is now invariant under a conformal mapping. The function G(r) does not involve
the medium or boundary except through the constant Z. It is therefore invariant under a
conformal mapping. This is another reason for choosing the boundary condition for our
model in the form (26). The form which is invariant under a conformal mapping is

etni

¢““¢ZA/7I

U4
o T4 () 2= (108
It may be surmised that the invariant formula analogous to (96) is
1/ 7L, \? ‘
L—L,.=—( i ) | 109
2\7aNypa (109)

In view of the invariance of (107) under a conformal mapping it follows that, to find the
field in any medium which together with its boundary is obtained by a conformal mapping

46 Vor. 255. A,
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366 D. S. JONES

from our original medium and boundary, it is only necessary to replace ¢, L, N, p, y in
(107) by ¥, LV, NO, o 4D, To put it another way, these quantities can be calculated
directly in the new medium by geometrical optics and substituted at once in (107). Since Z
is a constant G is unaffected. The main difference is that a different boundary condition
will hold in the new medium. However, in the cases Z = 0 and Z = o0 even the boundary
condition is not altered. On account of the large number of different media and boundaries
that can be obtained by conformal mapping, the only restriction being that the mapping
does not have a singularity in the region under consideration so that the conformal pro-
perty does not fail, one is naturally led to consider the possibility that (107) is of universal
applicability.
54 S Sy 5, 2

P

N\

A A B B A Ay

Ficure 3. S, S, S, ..., S_; are images of the source in the homogeneous medium
and each provides a contribution (e.g. SAPB and §,4,B, P) at P.

B

p

Ficure 4. There are contributions at P from all paths starting
at $ and tangential at 4, B, B, and 4,.

Before attempting confirmation of this consider the problem of a line source in a homo-
geneous medium outside a finite convex obstacle. Let the potential function V' when the
boundary is raised to a constant potential be given by

W = U+iV = g(2).
Outside a circle which completely encloses the obstacle,
W =iBlnz+Xa,[z",

where B is real and non-zero. Thus U is multiple-valued, increasing by 278 in every circuit
of the obstacle. Iftherefore the conformal mapping W = g(z) is made the problem becomes
one of an inhomogeneous medium over a plane boundary with a periodic distribution of
sources, the separation between them being 275 (figure 3). According to the above theory
“each source will give a contribution of the type (107) at the point of observation P, the
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HIGH-FREQUENCY REFRACTION AND DIFFRACTION 367
points of glancing incidence being (4, B), (4, B,), (45, B,) ... (4_,, B) .... Returning to the
original medium the points 4,, 4,, ... are superimposed as are the points 4,4_,,.... On

account of the invariance under a conformal mapping this can be interpreted in the original
medium as there being a contribution (107) at P from each of the paths

AB, ABB,A,AB, ABB,A,ABB,A,AB, ..., A,B,, ABBAAB, .. (figurc4).

Those paths which go completely round the obstacle correspond to creeping waves.

The above theory may be summarized as follows. Away from any boundary the field
obeys the standard laws of geometrical optics. Shadow regions and diffraction are caused
by behaviour near the boundary and are dictated by the effective curvature 1/p which is
a combination of the curvatures of the boundary and the ray tangent to a boundary. As
a model we select a medium with a linear gradient and then cast the field into a form in-
variant under a conformal mapping. In this form we suggest the field is appropriate to all
media and boundaries which satisfy the conditions:

(i) The frequency is high. At the boundary this condition takes the form

kNp, > 1

on account of (45). However, there must not be a point on the boundary at which both the curvatures
of the tangent ray and boundary vanish. This would correspond to ¢ = 0 so that all shadow and
diffraction effects would disappear from our model, and our formula could no longer be
regarded as reliable. In any case the boundary condition (108) at that point would be
obliged to be dy/dn = 0. '

(ii) The shadow boundary is a single ray tangent to the obstacle. The present theory
does not apply when the shadow boundary is a caustic of the incident rays.

(iii) The rays do not form a caustic between the source, point of observation and boun-
dary. However, if the caustic were sufficiently far from the boundary it might be possible
to predict the field in a region surrounding the boundary by (107) and then extend the
calculations by ordinary geometrical optics through the caustic.

(iv) The source and point of observation must not be close to the boundary of the
obstacle. For our model the condition is (66). There are several ways of generalizing this
but perhaps the most convenient is

KLY(N,p,)t > 1,

where L, is the optical path length of the shortest ray to the boundary from the source
(or point of observation) and N,, p, are values where this ray meets the boundary. Note
that the restriction of having the point of observation nearer than the source is no longer
necessary since (107) satisfies the reciprocity theorem.

(v) The contributions from all points of glancing incidence must be added. If, by pro-
ceeding along the boundary, we return to a point of glancing incidence then an additional
contribution is necessary.

Under these conditions (107) should give the field with a relative error of O(k~%) when
there is a line source producing a nearby field of e #¥r/(Nyr)* provided that the boundary
condition is (108).

A word is necessary about the significance of L, This is the optical path length of an
incident ray from the source to point of observation assuming that the obstacle is absent.

46-2
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There might appear to be a possible difficulty over this definition in the shadow region but,
in fact, a short way into the shadow from the shadow boundary the asymptotic formulae
(80) and (A 5) apply so that L, disappears from the field and only the series is left as in (102)
and (103). L is the sum of three parts (see figure 2), the optical path length of the ray of
glancing incidence from the source, the optical path length along the boundary to the point
of tangency of the glancing ray through the point of observation and the optical path length
of this latter ray. When the point of observation is in the illuminated region the boundary
optical length is taken to be negative. A short distance from the shadow boundary into
the illuminated region the precise definition of L is immaterial in the sense that the asymp-
totic formulae (93) and (A7) apply and the field is ¢;+¢,. In fact the rule is: calculate
(107) first near the shadow boundary; in moving away from the boundary as soon as
k(L—L) is large replace (107) by ¢;+¢, in the illuminated region or by the series in G, as
exemplified by (102) and (103), in the shadow region. It must be remembered that (L— L)}
is to be taken as positive or negative according as one is in the shadow or illuminated region.
Also 4 and B are the points of glancing incidence from the source and point of observation
respectively.
12. THE FIELD ON THE BOUNDARY

As explained in condition (iv) in the preceding section the formula does not apply when
the point of observation is near the boundary. Often it is useful to know the field on the
boundary. To find this return to the model with the linear gradient and put y == 0 in (43),
thereby obtaining

Y= B§N Ai {iB (14 qyo—a2) ¥ AL {¥ (1 —a?) em}+ R, (e2) Ai{k¥(1 —a?) e¥mi}] e-ierixdy

i iBkN, e~ ¥mi J'oo Ai {/<§(1 +qyp—a?) eé}ni} e—iakNix da
4m? —o 3 AT {K3(1 —0?) et} 1 Z Al {k¥(1 —a2) ebri)
after a use of (57).

Assume again that the source is not near the boundary; the main contribution to ¥
near the point of glancing incidence again comes from the neighbourhood of « = 1 where the
Airy function in the numerator can be replaced by its asymptotic approxmlatmn (41).
Putting « = 144/ and retaining only the first power of § we obtain

¢. _ k%‘e—<3~7n " e—lkL e 21kL1,ﬁ

2%m K (qyo)f}j e¥mi Ay {K%/)]Cﬁgm}-{—ZAl {K%ﬂe am} ﬁ
From (29) with 4 = N,, y = 0 we have y, = (3¢/N,)¥/(¢qy,)* so that the formula for § can

be writt@n =y, e WL F{LEL k1), (110)
e~ i e~ipT
F = ry f v o . d .
where ) =% | Ay (eI £ ZAi (o)

Various properties of F are derived in appendix B.

If (B4)isused in (110) for L, > 0 (64) isreproduced. On the other hand if L, is sufficiently
negative for (B 5) to be valid
g FLo¥a xXp{—IEL+ SR (g V)"

kL,— iZk4
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Expanding (30) and (31) with y = 0, about 4 = N, we find
L; = L—5¢Li(q9/ M)
cosy = — gL/,
so that v ={14+R(x)}¥;. (111)

This is the same as would be predicted by geometrical optics.
Modifying (110) as in the preceding section we take, for the value of ¢ at the point C

of the boundary, P— {(Lsz)% J,C Ndl }
a (M)

This is, of course, subject to the conditions (i) to (v) of the preceding section except for the

alteration in the point of observation. In using (112), as soon as C is sufficiently far from 4

on the illuminated side for (B 5) to be valid we replace (112) by (111).

Under the same conditions

(112)

°_Ndl } | (113)

ai_ﬁ = —kN (___2“«)%2}, e—ikLF{(;Lk):% Bl At
o kNepd (M)
By means of the reciprocity theorem the field due to a source on the boundary at a point

some distance away from the boundary can be deduced.

13. THE STRATIFIED MEDIUM WITH MONOTONICALLY INGREASING REFRACTIVE INDEX

In this section we consider the verification of (107) when the boundary is y = 0 and the
refractive index of the medium in y > 0 depends only on y and increases monotonically
from N, (#0) at y = 0 to an infinite value at y = o0o. We shall further suppose that the
derivative of N is non-zero everywhere; in particular, that the normal derivative N at
y = 0 is non-zero.

The equation to be satisfied by ¥ is now

d2W/dy?+k*(N2—Nia?) ¥ = 0. (114)
If « > 1 there is a y > 0 such that N? = N?a? and only one such y since N increases mono-
tonically with y. For |a| <1, N2> N}a? for y > 0, but it is convenient to imagine N
continued below y = 0 so that it is still monotonically increasing; there will then be a single
negative y for which N2 — N3«? vanishes when |«¢| < 1. Denote the simple zero, which now
exists for all a, of N2— N{a? by y,; it will be a function of a.

Make the change of variable £ 1
V= (]“\Tz“_“jv"g;p) v(£),

where = [ (e-Npray (r=4,620), (115)
0N
M=t =— [ (Npe—Ntdy (y <y, E<0). - (116)
K2
Then (114) transforms into 2 20 /02
@+{k2§+ _d_‘g@_y_M: v =0, (117)
déz (d¢/dy)?¢g
where g=- 1 == ( é );;.
(dg/dy)* \N2—Nio?
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370 D. S. JONES
To a first approximation (117) is 2

with an error which is of smaller order than the one made in taking (107) to be the field.
Since this equation can be converted to Airy’s equation (38) W' can be expressed in terms
of Airy functions whose arguments are multiples of £. For example, with a line source at

(anO)a 4 2%ﬂ§eilzﬂi g \ 3 g i
1= ) o el 0 e

for £ > &, or y > y, where £, is the value of { at y = y,.
The boundary condition (108) becomes, since p = g,

Y[y -+ (2K Ny N{)* Zif = 0
on y = 0. Hence the solution to our problem for £ < &, is
Y = 2bnb eI, o ( N2 gNzocz) < N2 é’(i]\]z 2) Ai (K%, eb) {Ai (K% em)

[ d{g Ai (K em)}/dy +- (252N, N})* Zg Ai (K em)
dfg Al (K3 ebi)}/dy+ (2K2N, N, )%ngl (K8 etni) ),

Ai (B¢ e%ﬂi)} e~ iekNx dg.
(118)

Note that if N had been bounded as y — 0o, further consideration would have been neces-
sary of the behaviour at infinity for sufficiently large values of a—when §{ might be ima-
ginary. However, with our assumption £ is always real at y — co.

The discussion of (118) is similar to that of (43) and we shall illustrate only certain salient
points. For example, asaincreases from zero {steadily decreases (for fixed y), passing through
a zero to the right of « = 1. The equation corresponding to the upper sign of (46) is

d
T o} = o,

Y
or f . (—nyj\%ﬁ)* dy -+ Nyx = 0. (119)
From (13) we see that this is an incident ray with 4 = aN, going down from the source.
The phase of the contribution from this point of stationary phase is —ik(36¥—3£8—aN;x)
with « given by (119). On accountof (115) this is —ikL; where L;is given by (19). Similarly
the amplitude proves to be y; as given by (18). Thus the points of stationary phase reproduce
geometrical optics as in the case of the linear gradient.
Near the shadow boundary which, according to (22) with %4 = 0, has equation

Y WA
= | d
== vyl +f (N2 NZ)% Y
we need consider only the interval of integration around « = 1. When « =1, y, = 0 and
when o2 = 1/, y, satisfies N2(y,) — N2(1+p)
or Ni-+2y NNy = Ni(1+f)

to a first approximation. Since N =0,
h & Nf[2N] (120)
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and, in general, ¥, is a power series in § when a ~ 1. Thus near « = 1 the right-hand side
of (1 15) can be expanded in a Taylor series of powers of f. One finds without difficulty

d
2 N¥( 3 )b dy—L1N? J v__ 4dy
l : ( : ) }
1LN4 §2 — — dyt.
3N {NN’(N2—N21’)% jo (N2— N3t dy \NN’ y
Hence from the interval with « slightly greater than unity the first term of (118) gives
(neither the source nor point of observation being near the boundary)

KN, etni-ikL w . )
—HkBL, — HEL, f?) dp, 121
2‘§7r5(N2—N%)’1 (N%——N%)*fo exp (—$ikpL,— $ikL, (%) dp. (121)

where L— ["(N*—N2)tdy+ fy(N2~N%)%dy+le,
0 0

N? Yo N?
1= N [ i d 1 gy,
v = Nx ] e e Y

Nt Nt y 1 d/ 1
' 2NN'(N2— N2)r+2NON5(N§,—N%)% =) e dy \Ww) Y

_ins " 1 d( )
vt [ it dy () v b

From (14) the optical path length from the source to the point of glancing incidence is

— [ N2 w2ty
The optical path length of the ray of ;lancing incidence through the point of observation is
R ALY
and the abscissa of the point of contact of this ray with the boundary is
x—f:Nl(N2-N%)‘* dy.
From (21) the point of contact of the ray of glancing incidence from the source has abscissa

0
- f N,(N2—N2)-tdy.
Yo

Consequently, the interpretation of L and L, is the same as that in figure 2.
The incident ray to the point of observation has optical path length

L= fy°N2(N2-—A2)—% dy -+ nyz(Nz—AZ)—% dy
h h
and the equation of the rising portion is
= fyA(NZ—A2)-*% dy+fy°A(N2—-A2)~& dy,
h h

where 4 is nearly equal to N, and 4 is nearly zero. By expanding about 4 = N, we find
L~ L—3I}L, (122)
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372 D. S. JONES
which is the same as (96). Hence (121) can be written
]\[1 eini-ikl,i foo
‘ —isdg.
28t (N2— N2)¥ (N2 N3LE {k(L—Lm%e /
When 4 = N, and /1 = 0 in (23)

2 Ny _
" (PN (- VY eL
so that the first term of (107) is reproduced.
For the second term of (118) when a? == 14/ first consider the bracket [ ],_,. Denote
by &, the value of { when y = 0. For a2 = 1/ (f > 0), §; < 0 so that (116) is appropriate.

Use of (120) gives :
o 3(—8)! = [ (N3p—28, Niy)tdy

— N3N,
to a first approximation. Thus £, ~ —p(N2/2N;)* (123)
and, consequently [d¢/dy],—, ~ (2N, N])%. Also
[1 dg 11d§ 1 NN’ ]
gdyl,o |4&dy 2N:—N%a2l,.,

[ ]

_ N(1—a?)? N
(=g 2M—)
On account of (123) the right-hand side is not singular as « - 1 but O(1). Hence, rejecting
a term O(k~¥) we have for the bracket [ ],.., in (118)
em Ai’ (K3, em) + Z A (K3, e
ebmi Ay ( ki, etmi) - Z Ai (k%gl e%m) ’
Therefore the contribution to (118) is
(2N} esami-ibL
RN 2(en)} (N2 N (V- N}
o e Al (u) +Z Al 2N[\?
: f o eMAL (pe- gfl)) +ZAi <(l/?e b exp{ sty (/cN 2) }dﬂ
The contribution from a2 < 1, may be dealt with similarly to give a total contribution of
_ (2N])¥ e ikl G{ WL, (ZN’) }
PN (N N (N3Nt 7 g

Now, from (20) ., NN

Ya= ma

) _ i
Y= (N2 N2)%>
1 1 1 — NN,
Pa /’B Y

Coonsequently the second term of (107) is reproduced. This completes the verification for
the horizontally stratified medium with monotonically increasing refractive index. Because
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‘of the invariance under conformal mapping (107) will be valid for all problems which can
be obtained by conformal mapping.
It is of interest to observe that (122) can be written in the invariant form

. . (L—L)t =y, L,[24y 475 Nyp,4 (124)
as conjectured in (109).

14. THE HOMOGENEOUS MEDIUM
In the preceding section (107) was verified for a variable medium with a straight boun-
dary. This section is devoted to a consideration of certain cases when the boundary is
curved but the medium homogeneous. There is no loss of generality in taking N = 1.

(a) The circular cylinder

Let the cylinder be of radius a and let the source S and point of observation P be situated
as in figure 5 (we assume 0 < ¢ < m). Since the rays are straight lines in a homogeneous
medium their curvature is zero. The curvature of the cylinder is 1/a at every point but,
according to the rule of § 11, it is to be counted negative, since the centre of curvature is on
the opposite side of the boundary to the medium. Hence p, = @ and our theory should be
applicable for £a > 1.

Ficure 5. The parameters for a circular cylinder in a homogeneous medium.

With each of the two points of glancing incidence is associated a single ray which con-
stitutes the shadow boundary. Condition (ii) is complied with. Clearly condition (iii) is
met. Condition (iv) requires

k(ro—a)¥la > 1, k(r—a)¥jat > 1. (125)

Consider first the upper point of glancing incidence 4. The various quantities occurring

in (107) are
(107) L; = (12472 —2ryrcos )3,
a

L= (r%—az)%ﬁ—(rz—az)‘!’+a(0—cos‘1;——cos‘l;),
2 ’
V4= (r3—a?)4,
= (P —at)
"Nl gty e _a
i =1|a dﬁza’}(ﬂ—cos 1= —cos 1—)
ff* (Np)t 4 To r

47 Vor. 255. A,
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374 D. S. JONES
where the cos™! lies in (0, 7). Substitution in (107) gives

ot e G{(Bha)t 3}
(§E (3 —a)t (P~ )}

e—-ikLrl—ini ©

(mL)} R

Iy = e df—

a a
where y = 0-—cos!=—cos™!-.
7o r

Note that L depends on y but not L,.

To comply with condition (v) we must consider the possibility of going completely round
the circle from A4 back to 4 and then going to P from B. Such a process gives a contribution
I(x+2nm) where n is the number of times the circle has been described.

Similarly there is a contribution from the lower point of glancing incidence of

I(y-+-2m—20),

plus those due to circuits of the cylinder.
Hence, the field which satisfies the boundary condition
oY |or+-k¥(2/a)* Zy = 0

on 7= ais V= % {I(x+ 2nm) + I(x + 2w — 20 +- 2nm) }. (126)
n=0
Since x+-2nm (n > 1) is never less than 7 both k(L—L;) and (3ka)® (- 2nm) are large and
positive for these values of n. Therefore asymptotic formulae, as for (103), are appropriate
and I(y+2nm) = O(exp {id, 7371 (3ka)* (2n—1) 7}). Such a term can be neglected and so
can terms such as I(y -+ 27 — 20 4 2nm). With this simplification

U= I(x) +1(x+2m—20). (127)

Since the problem of the circular cylinder has been solved exactly (126) and (127) can
be verified from this solution. Such a verification is not strictly necessary since the mapping
w = 1lnz converts the problem into one of a stratified medium with N2 = e above the
straight boundary v = In a. Such a medium comes within the theory of the preceding section
and so (126) is valid by the invariant property.

The point of observation is near a shadow boundary when y ~ 0. For more negative
values of x, I(x) gives the field of geometrical optics: I(y-+2m—20) will be exponentially
damped and may be neglected unless 7, > a. For more positive values of §, both I(y) and
I(x+2m—260) are exponentially damped so that the field is exponentially small behind the
cylinder (unless 7, > a). Near the shadow boundary L, can be expanded in powers of y,
namely

2__ g2 (2 — g2 2__g2)E (2 g2)%
ngx(_’gr_i)_(’*_ﬁ“) -+ 2ay (r§—a?)* (r*—a?) 2 {a?— (13— a?)} (P —a?)E},

R? R
where R = (—a®)} (P —a){(r2—a®)t + (12— a2}
s L~ = “z)iérz il ay—5x°R,
(L—L)* = (3R)*x (128)

in agreement with (124). These formulae permit the calculation of /() without the inter-
vention of 4.
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The field due to an incident plane wave can be calculated by a direct application of
(107) or by taking the preceding results with 7, > a and multiplying by 7% el*r. Thus the
incident plane wave e~#7¢s¢ (¢ = m—@) produces the field

¥ =I(x) +1i(x-1-2¢),
where

—1i ) [ ¥ ik (72— g2)} 4
I(y) =P (;ﬁ_ilf_’;;c%gs_é:ti?’}) f €A a’exp [(%kl)’i{((; - ZZ)) . X Gr(2ka)t 4,
X =3im—¢—coslajr,
L—L,= (r2—a®)¥4-ax—rcosg.
For fixed non-zero ¢ as r increases a region is always reached in which geometrical optics

is valid. Therefore, for 7 > a, most interest centres around the region in which ¢ is small
and (128) holds. Then

Y a—ikr
—ippgpl 2 C
—Gknty ¢ ﬁ} (—%—k)*r%
X [e7ikex G{(bka)® 3} + o2 G{(3ha)t (r+26))].

Since x ~ a/r— ¢ the second term can be written

tmi pGknx+24)
¢- ~ e—ikrcosg&{l__e f Ak

JT

alr P A
|7 exp (= ikr(g*+ 2u-+-u2)} (3hr)t du (7) ﬁl...“;_“? o~ likrg?

—alr kr

since the #? in the exponent can be neglected. Hence

: 2\t
¢ ~ e~ ikrcosg (__) e ikr+imi
nkr

o} [E57+ (b b o-i(e-ies G(3ha)? )+ G{— (Bha)') |

a result which can be obtained independently (see, for example, Jones 1962).
It follows that the sum of the scattering and absorption coefficients (Jones 1955) is

ok gt
(ka)?
For the boundary conditions Z == 0 and Z == oo this can be evaluated by (A10) and (A 11).

For other values of Z see the graphs referred to in appendix A.
Finally, note that (112) gives the value of ¥ on the boundary at the point C of figure 5 as

Z e~ 1G(0).

];—Za.@ [ka+ (ka)tnte-4712G(0)] = 2+

% {J(x-+2nm) -+ J(x-+2m— 20+ 2um)},
n=0
1 -ik{(g-ad}+a ] i
where J(x) = Gg_:dﬁ‘e kog-ad+ax) Ff(1ka)¥ y}
and now x = 0—cos!(afry).

For the incident plane wave replace J by J; where
Ji(x) = e F{(3ka)}* x},
x=0—dm = dn—g.
In general only the terms z —= 0 of the series are necessary.
47-2
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(b) The parabolic cylinder
Let the equation of the parabolic cylinder be

¥ = B~ 26

and let the source § be specified by the inclination v, of the tangent to the parabola to the
positive x axis and the distance 4, of S from the point of contact (figure 6). Let the position
of the point of observation P be similarly specified. The radius of curvature of the parabola
at the point where the tangent is inclined at v to the positive x axis is £ cosec®v so that
p = E& cosec’v. Hence our theory should be valid when £} > 1.

Ficure 6. The parameters for a parabolic cylinder in a homogeneous medium.

The elementary arc length on the parabola can be calculated from its being ¢, d¢ and
is &2 cosecdvdv. Hence

L= a’0+d+Jw &£ cosec® vdy

= dy+d+18 {1n

tandy cosv  cos VO}

i, qin2 n2v.|’
tan v, sin?y  sin?y,
Ya=dst, yp=d7,

3 N,d! f" 2 5, tandy
s = fcosecvdy = 3 In LA
f 4 (Np)* vago s tan 37,

L, is just the distance between S and P. Substitution in (107) now gives the field at P, there
being only one point of glancing incidence and one boundary ray to consider. The polar
co-ordinates (7, ¢) of P with respect to the origin are related to d and v by

rcos ¢ —3£3(1 —cot?v) = dcosv,

rsin ¢ +£E3 cotv = dsinv.


http://rsta.royalsocietypublishing.org/

=

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

HIGH-FREQUENCY REFRACTION AND DIFFRACTION 377

The field for an incident plane wave can be deduced. With the point of observation a
large distance from the origin and near the shadow boundary, a direct derivation or

(124) gives (L)} = (1)} (o)
~ (1)} (o +E3/2rsin ),
[r Nt g |
4 (Np)¥  singg

for the incident plane wave y; = e-¥#rcos@-¢0) (0 < ¢, << ). Since the radius of curvature
0o at the point of glancing incidence is £ cosec? ¢, the distant field near the shadow boundary
1s

_ exp{ibreos (§—go) ) rg
4 Jm GEr¥g—go) ¢ /

_ (ﬁ_)% PR [1 —exp {— FikE§ (4 — @) cosec g}
mkr 21(4— o)

+ (bhoo) b exp {— i — BikER (9—dh) cosec g} G{(Bhen)* (640} |

These results can be confirmed by independent calculation (see, for example, Rice (1954)
and Keller (1956)). Note that in this case the quantity p, in (107) and in the boundary
condition (108) is not constant but varies from point to point. This is the first confirmation
of the correctness of the forms of the factor involving p,.

The conformal mapping w = i(2z)* where (2z)* = /2 when z = 1 converts the problem
into one of a straight boundary v = £, with a medium, in which N2 = 42442, above. Since
such a medium is not included under the theory of § 18, an extension of the domain of
validity of (107) has been obtained.

(¢) The arbitrary convex obstacle

It is possible to write the field which (107) predicts for any convex obstacle, but there is
little virtue in so doing because an explicit expression for the integral in the argument of
G cannot be obtained in general. Furthermore, there are no exact solutions available for
comparison except for the elliptic cylinder. Such results as are known for the elliptic
cylinder are in agreement with (107).

It should be remarked that, for plane wave incidence, the sum of the scattering and
absorption coefficients predicted by (107) is

PAR
ktD
where D is the length of wave front intercepted by the obstacle and g, g, are its finite radii
of curvature at the points of glancing incidence.

2+—— (o} +0}) Z e 1 G(0),

15. THE CIRCULAR CYLINDER IN A RADIALLY STRATIFIED MEDIUM

Consider the problem of a circular cylinder of radius ¢ surrounded by a medium in which
the refractive index varies radially but is independent of angle. Suppose that the refractive
index increases monotonically from N, at the cylinder to N, at infinity. The mapping
w = ilnz converts the medium into one of the type discussed in § 13 so that (107) is known
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to apply. No additional information about the range of validity of (107) is therefore
forthcoming but it seems worthwhile to give the formulae predicted in view of the practlcal
importance of the problem.

First, it is necessary to determine the rays. In vector form (8) are

4 (N dr) = grad N.

ds\" ds
Taking the transverse component of this equation we obtain
1d/,df\ dN df
Nfa}( ds) a0

since N does not depend on #. Here r and 6§ are polar co-ordinates with the centre of the

cylinder as pole. Hence do

Nr?2 - = constant = 4.
ds

Therefore dr A2 \}

@+ (1)

and the equation of the rays through (r,, 0,) is

Adr
(9 -
b :tf N 22 __ A2)

The lower sign corresponds to an incoming ray, the upper to an outgoing ray.
An incoming ray tgrns atr =cif Ne)e—4

which occurs if Nyry > A4 = Nja. The value 0, at the point of turning is given by

Adr
—— | =57 129
f?‘o r(N22— 42)} (129)
when 6, = 0, and the ray leaving this point has equation
4 Adr
0-0,— [ 2. 130
© Jor(N2—A42)% (130)
Thus the equation of the shadow boundary (figure 7) for a point source at (r,, 0) is
g f N,adr j’ Njadr
o 7(N22—N2a®)} ), r(N%2— N2a?)t
The optical path length of a ray from the source after it has turned is given by
Nrdr r N2rdr
L-| | : 131
=), e, (N (131)
It follows from (129) and (130) that
r N, adr o Nya
L, = N, {ﬂ—f 1 l—f 1 d}, 132
v = e (N2 N2t )y r(N22— N2a2)t™ (132)

L— Naf+ f " (N2 — N2a2)Edrfrt f " (N2 — N2a?) dr)r. (133)
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The calculation of the amplitude proceeds as in § 2 and we find, on an incoming ray,

1/y} = (N§r§— A7)} (N2 — A2}

f " NN — A2t dy.

At a point of turning y2 = (14-¢N./N,)|(N212— N2c2)}
and on a ray after it has turned
1/yf = (N§rg— A2} (N2 — A2)} |ofjo A|, (134)
where
I _ 24%— N%? n 24%2— Nir3
04 (N22— A2 2N(N'r+N)  (N2r2— A2 3 Ny(Njro+N,)
J‘G 242— N2 d } JFJ 24%— N2y? d{ 1 }
(N22— 42)3 dr {NrZ(N’r—l—N (N22— A2)t dr \Nr*(N'r-+ N)

Ficure 7. The rays of geometrical optics in a radially stratified medium.

It follows that
0 1-+aN|/N, s 14aN{/N
Ya= > VB= .
(N2r3— N2g2)} (N22—Nia?)}
Also, from (106) and (104), 1 N

PN
Hence, for the transition across the shadow boundary (107) gives

= Vie“i“‘”hifw e-if? dﬂ_{]vla(l +alNi/Ny) % e 2 G (3k)F Ly{(1 4 aN;/N,) [N, a}i‘]
wt R L-Lh (3k)¥ (N3 12— N2a2)t (N%2— N3a2)}

(135)

where y;, L, L;and L, are given by (134), (133), (131) and (132), respectively. The boundary
condition is oy 3
X e, {kN (1 +aNl’/Nl)} Zy = 0.

For the complete field a parallel contribution from the other point of glancing incidence
must be added as well as exponentially small terms from the rays which make complete
circuits of the cylinder.


http://rsta.royalsocietypublishing.org/

s |
PN

AL

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

380 D. S. JONES

Naturally, putting N = 1 for all 7 recovers the formula for a circular cylinder in a homo-
geneous medium.

Suppose now that the source and point of observation are close enough to the cylinder
for N to be replaced by the linear approximation

N=1+N(r—a)
in the region under consideration. Let r = a+#h, ry= a+h, where h < a, by <a. It is
possible to meet these conditions and still comply with conditions of the type (125) because
the latter require only /a > (ka)~%. Then
' NZrz—a? = 2hya(l+ Nia)
~ 2hya?la,,

where 4, = —— .

To the same degree of approximation

L — af+(2)a) 3(R-+13),

L, = af— (3a,)* 2(h* 4- k)
and near the shadow boundary

1/} = (2a,)* (B +-4}) = L,
If af were replaced by «,0 these formulae would be the same as those for a circular cylinder
of radius a, in a homogeneous medium. In other words, under the conditions stated #he
propagation occurs as if it were in a homogencous medium but the cylinder has an effective radius a,
provided that the actual distance afl along the cylinder surface between source and point
of observation is used instead of the effective distance a,6. This result has been proved
before with special forms of the refractive index such as N2 = 1 —7-742/r2 (see, for example,
Bremmer 1949).

Note also that the formulae are the same as those for the horizontally stratified medium

of § 10 provided that the intepretation x = afl, y = h, y, = hy, ¢ = 2/a, is employed.

16. THE TIME-DEPENDENT FIELD
This section is concerned with the application of our theory to the equation
V20— N292@[d? = 0,
where ¢ is time. The source is quiescent until ¢ = 0 when it is suddenly switched on and
produces a field (22— NZr2)~*H(¢—N,r) at nearby points. Here r is the distance from the
source and H(x) is the Heaviside unit function which is unity for x > 0 and zero for x < 0.
Let ¢ be the Laplace transform of @ defined by

- f " estdt
0
for 2 (s) sufficiently large. Then ¢ satisfies
V2 —s? N2 = 0 (136)

and near the source behaves like

o0 e“S
o g = Koloter
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K, being the modified Bessel function. For large |s| and non-zero r the asymptotic formula
for the Bessel function can be employed, so that y behaves as (n/2sN,r)* e~ near the
source.

The substitution s = ik converts (136) to (1) and produces a source behaviour which is
the same as that which has been considered in the preceding sections apart from multi-
plication by the quantity (m/2s)%. Our formulae have been derived on the assumption that
k is real and positive. Now assume that they remain valid when £ = —is. Then, for large
A(s), (107) gives

(N ek (e - (N4 N p4 ps)t csr [ (1oyh amtm (B _Nd
¥ = (‘2;) 7 f{S(L_Li)}% rdp— (hs)besmi 7473C G{(?zs)%e ¢ L (Mﬂz)g}]'
(137)

In (137) s does not occur in any factor in which it is not explicitly displayed. The function
G is defined, not by (A1) but by (A 2) to avoid convergence difficulties. If .#(7e¥™) > 0
formula (A 3) can be deduced whereas if #(7) > 0 and J(7e¥") < 0 (A 4) holds.

The field @ is now found by using the inversion formula

St
D= Wlf,\_m ¥ estds,

where A is a sufficiently large positive real number.

1 [Atio est po 1
Now o f S e dpds = S [H(—a) + H(—B—a)] H().
Also, if 2 (b et™) > 0 and #(b e'*’”)
1 Mo exp (st—bst) ds — 3PH(t) e ‘*”i’

3 3 — 9%;-% ¥
21 J 2o ! it ey (i exp {4s3—bs/(3t)3} ds = 3%4+~3H(¢) Ai{b/(3¢)%}

from (39). In the inversion of the term involving G the exponent satisfies the conditions
B B

on b when G is given by (A 2) provided thatf = 0. Whenf < 0 an exponent which has
4 4

the properties of b can be obtained by deforming the contour of the first integral in (A 2)
into the ray e* and of the second integral into the ray e~37.. When this is done it is found that

 [H{ — (L— L)} H{—# — (L— L) H(:— L)

=51y
NNy p4p)} vavsm 8 gy, py 4 (P Ndl
sy me- Dk [ee-opt [L0s ] ass

e T [ e Al () +Z Al (u) . :
= - - -~ A dmi
where  K(7) NG fo eHIAT (pe-$mi) 1+ Z AL (g i (presm™) du

e_ﬁmf e AV (i) + Z A (4)
27 J o MAT (uetri) + Z Al (ueti)
etni em Al (uetm) + ZAi (uetm) . .
- : _ A (ur b
2J”f o AT (o) 1 Z A (ue-iri) - (HT ™) di
+ed%ﬂifw e AP (ue ) 4 Z Al (ue-ii)
2./m el Ay’ (u e%ﬂi) +ZAi(u e%zri)

48 VoL, 255. A.

Al (pre-d)du (1= 0)

Ai (pre-¥iyduy (r<0).
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382 D. S. JONES
Note that K(0) = G(0)/(—%)!38. (139)
An alternative expression for K when 7 > 0 is
e vam e Al (u) +Z Ai () . . e e
= - : ~ A i) d
(T) 2 '\/7’ J.ooexp (—&mi) ef'*"” A’ (,u C"%m) + ZAi (/t e—%m) . (ﬂT ¢ ) ﬂ+ 67 \/77
e Tam Z2e 1 Ai (—48,71) (140)

“Grgn 2 (0,—Z2e~3) {AQ" ()22 7

When |§,|7> 1 the asymptotic formula (41) can be used for the Airy function in the

numerator and )

e Zrexp(—gmig(—d)}

brym " am(d,—Z2e7¥) (=0, 1) H{AL (8,

since only the first term of the series need be retained. Here arg (—4,) is chosen so that

larg (—8,)| < 7. Also Ze~#7i/Ai’ (§,) should be replaced by —1/Ai (8;) when Z = 0.
Similarly, for 7 < 0,

etz foo e-imi A (u e—%ni) L ZAi (,u e—%ni)

2«/7" wexp (—37i) e%‘”iAil (/,l e%"i) - ZAi (ﬂ C%”i)
Equation (138) is of course valid only just behind the wave front. Since L— L, is small

compared with L, (138) can be effectively written

K(r) ~

(141)

— i
e~ a7

6r./m’

K(r) = Ai (pr e~y dy+

] 2
Y gL — YNaNs paps) yayp3int K[M I %f Ndl
2k(t—L,)* (t=L) 2b g7 (¢ — L)% =Ly

( 142)

The relative error is, from (101), O(7%) where T is the time from the passage of a wave
front. At the shadow boundary itself (142) predicts

b2 ot

e Y Hi—L)—— Nap) ViTG0) .
oLy gt i (g T

on account of (139). As we move away from the shadow boundary into the illuminated

region we obtain the geometrical optics field as and we move away into the shadow region
(141) is applicable so that, if we recall (124), we get

6 N, N, t Z2e-ini et ,
= S"Z?_'}'_Bél);{;i/')lzgg)p 72 e~%ﬂi__3l (t__L)if: B Mdl }iH(t“L)a (143)
4 (Np)*
)%< Nd! }
where ‘- 1 (N,Ol)%
s(e—L)t

Naturally one must add contributions according to the rule (v) of § 11. Solutions to the
problems corresponding to those of §§ 13 to 15 can now be written down. Some calculations,
based on a different method, have been made for the circular cylinder and for the hori-
zontally stratified medium for a point of observation in the deep shadow by Friedlander
(1958). There is complete agreement between his results and those based on (143).
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HIGH-FREQUENCY REFRACTION AND DIFFRACTION 383
The field on the boundary is, from (112),

- (2 mesrla e

where F is defined by (B 3). Consequently on the boundary

j’_?’A M[{Gt L}&f Ndl] (t—L),

S ody—L)t (N,p,)
where M) = e2—;1 i f :exp 4nir edT AT (4 ei(’{l; igAi (e ¥ 720
B 62—7:' l f :exp<-§m> et Al (/zpe(’f’l’:)e—i_—zl ?Ai (petr) du (1<0),
P(r) = é% f::: ii::m Zteds-r2dz,
Note that M(0) = F(0)/(3m)%.

At the point of glancing incidence
o 1279 g

2b(t— L)}
which gives, when Z = 0,

1 399;/,,

O = H t—L
from (B 6).
For 7 > 0 we have also
P(—1d,)
M(1) = ; s .
M =2 Zrewiis) A3

2.4

For large 7, P(r) ~ exp (—%7%)
277’«’

—3(—16)8
that M exp{—§(=7
so Hha (M)~ oad(Zze W5y Ai (0"
Therefore, well into the shadow,
(DN

Similarly, on the boundary

0 YZetnighy, 38 d H(t— L) 3
W) T d@i (1 M[{“ by f

where M, (7) is the same as M(7) with P(7) replaced by Q(7) where

3% 7/1 e_§
ol (t— L)} (Z2e 37— 8) Ai (3,)

Ndl

1 wexp (§7i)
Q1) = 5= j z-tedt-r2dz,

wexp (—3mi)
Observe that dQ/dr = —P.
A word is necessary about the boundary conditions. The substitution s = ik in (108) gives

0¢ ’ 37 o—3mi o .
372 (m—[) siZe ¢ == 0,

48-2
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384 D. S. JONES

This may be regarded as the Laplace transform of

[ 9 ) du+§ﬁvl( : )%Ze”%”i(——%)!f ) 4y g

o 0n m \4Np, (t—u)t
aD 3N 1} 1 d(D )
—sm( 1 H -3 22\ —
or 8n+ - (4szz) Zewm( { )t J[f —u)” u; 0

so that the preceding results apply when this boundary condition is imposed. It reduces to
d®/dn = 0 and ® = 0 in the cases Z = 0 and Z =o00. It can be seen that the boundary
condition is real only if Ze 37! is real. Since the field must then be real, K(r) must be a
real multiple of e~#7i (this is supported by (140) because 0, is real) and both M and M,
are real.

The boundary condltlon on ® could be altered by making Z a function of s (e.g.
Z = st ™) but then the formulae from (138) onwards would have to be altered because
G would no longer involve s only through an exponential factor.

ApPPENDIX A
According to (88) the function G is defined by
G = [ A ) 2
(T) - L 1 A ey o, " o
2t Jo eI AL (pe ) L Z Ad (peim)
el foo E~%1ri Ai’ (u e~%ni) +ZAi (ﬂe—%ni)
2mt Jo  edAL (pedm) - ZAi (uetm)

e—‘ll.zﬂi )

e*i‘m' dﬂ

errdy. (A1)

This function, or a constant multiple of it, has been computed by Rice (1954) in the cases
Z = 0 and Z = 00. Values when Ze#7 is a real constant are displayed graphically by Wait
& Conda (1959). Itshould be noted that although Wait & Conda define G by (A 3) which
is valid only for 7 > 0 they compute it from the correct formula (A 2).

There are various alternative formulae for G which are useful. It will be assumed in
the following that the denominators of the integrands of (A 1) have no zeros in the wedge
between the positive real axis and the radius vector from the origin making an angle 3=
with the positive real axis. Since these zeros occur at J,e¥ and J,e~* respectively and
d, is approximately negative real according to the discussion after (52) this assumption
can be regarded as justified.

The contour of integration of the second integral in (A1) can be deformed into the
radius vector from the origin making an angle 7 with the positive real axis. This gives

Glr) = S 7 AV (1) +Z A (1)
2mt Jo edmi Al (pe¥m) - Z Ai (ue~im)

e Temi J‘°° e AL () +Z Al ()
2mt Jo edmi Al (uedm) 1 Z Al (pebri)

e"irm du

exp (iur e¥7i) dp. (A2)

On the other hand if we deform the contour of the second integral in (A 1) into the radius
vector and then change the variable of integration from x4 to —u we obtain for the second
integral e—Emi [0 e ¥ AT (petm) + Z Ai (i)

A e~irT du,
27 J wexp (tmiy € AL (e~ 81) | Z Al (pe-im) "
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In the numerator use (47) with z = ge~# and then, if 7 > 0,
— 187ri 0 i . . "i".
et f _ AV FZA(W) g, -
2mt J wexp (—4ai) €371 AL’ (ne37) 1 Z A (ue~¥ni) omtr
If 7 < 0 leave the second integral of (A 1) alone but deform the contour of integration

of the first integral into the radius vector making an angle 7 with the positive real axis.
Changing the variable of integration from x to —x and a use of (47) leads to

Bl AT (e ) + ZAi (pein) | edni
G f— € J' € : . - . ipr d A 4
(T) ont coexp (—§ni) elm Af/ ( /s e%”l) +ZAi ( u e:};m) € Y v ( )

G(r) = (A3)

omtr
for T < 0.
When 7 > 0 the contour of (A 3) can be deformed over the poles of the integrand to give

e~ Z2exp (—fymi+id,7e~¥7)
omtr = (0, edmi—Z2) 2nt{A1’ (4,)}

If Z = 0 replace Z/Ai’ (§,) by —e¥7i/Ai(J,). This formula is particularly useful when 7 is
large and positive since then the first term of the series dominates the remainder.

When 7 is large and negative, break the path of integration in (A 4) into the two intervals
(o0 e~37i, M) and (M,00) where M is a large positive real constant but less than 172, In-
tegration by parts shows that the interval (co e#7i, M) provides

1 {Z+1M
2i7rf*r Z—iM?

G(r) = (r>0). (A5)

. as . 1
+0 (M)} exp (—4m+EHME-iMT) 40 (—7—2) (A6)

since the asymptotic expansions of the Airy functions can be employed for x > M.
The interval (M, ) gives

e tmi po (7 iyt .
418
ot Sz O G)) e hd-+ium .
There is a point of stationary phase at #* = —17. However, a more elaborate treatment

than the usual one is required since an estimate of the next term is needed. Put g = ur
so that the integral becomes

72 ~}ni po Z—— iur 1 .
mt f —MYr {Z Tt 0 (u2 72)} exp {ir3(u*—4u®) } udu.

The transformation u?—4u3 = 4 —v gives
72exp (— mi+%ir?) l: f {Z —1u7 ( 1 )} e~ivr ’
4t Z+1u7 wrr?)u—1

55 (M)~ M|7? Z —1iur 1 \C—iv‘t3
fo :Z—l-iu'r+0(u272)fu—%dv]’

where in the first integral u—% ~ v¥(1—%v?) when # ~ } and in the second integral
u—% ~ —v}(1+20!) when u ~ . The standard theory of the asymptotic behaviour of a
Fourier integral now supplies

WA Z+iM*Y iexp (—imi+4iM?E +iMr) 1
o Gelo ) i e b
2(=7) Z+ g { * Yz i 2T7r%(l+2M%/1) 0
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Combining this with (A 6) we see that as 7 — —o0
Z— 4T
—1(_ 3= 2t —-—173 D
6lr) = H(~ M ZT T w4 0 10 (), (A7)

With regard to G”"(7) we have

g in 82Z2exp (— 3mi 18,7 e~3m)
w5 2nt(,etni - Z2) {A1’" (0,)}?

G (1) = (r>0). (A8)

For 7 < 0 note that the first term of (A 7) comes from the point of stationary phase so that
if its contribution is omitted

—i‘m
G"(1) ~ (A9)
273
as 7 — —00.
When Z =0 . .
G(0) = —0-308¢%7 = —0-298 +i0-0798 (A 10)
and, when Z = oo, G(0) = 0-354¢~7:7i = 0-342—10-0917. (A11)

Values of G(0) when Ze#7i is a real constant are displayed graphically in Wait & Conda
(1959)-

AprpPENDIX B
The function F'is defined in §12, namely

e—-%rri 0 eipt

F(1) = —— J — - —du. ' B1
™) 2m J o edi Al (pe=m) + Z Al (pe=3m) s (B1)
By replacing # by xe¥ we obtain
~47i poexp (37i) exp (—iur e%ni)

F=5%7 [ 7 2 L du. B2
(7) 2m J wexp (—gai) €™ AL (p) +Z Al (1) s (B2)

On the other hand deformation of the contour in (B1) gives

—§mi po —ipr

Fr) = e r dp. (B3)

2 J wexp (~gmi €37 A’ (ue~ i) +Z Al (ue~¥m)

For 7 > 0 the contour of integration can be deformed over the poles in the lower half
plane to give exp (i, 7 e~mi)
F(1) = p2 3 - > 0). B4

(=2 (Z2e-#1i 0 ) Ai (3, (r>0) (B4)
If Z is infinite replace Ze ¥ Ai (§,) by —Ai’ (J;).

When 7 - —o0 the same method as was used for G in appendix A can be adopted to supply

or ehir®

T—12

F(1) ~ (B5)

as 7> —00.

Computations of F (in some cases multiplied by a constant factor) have been made by
Rice (1954) (Z =o0), Fock (1946) (Z = 0) and Wait & Conda (1958) (Z of the form
—ip¥(ap—1i)~* for various real values of @ and p). It is worth noting that

F(0) =1-399 (Z=0), (B6)
ZF(0) = —0-77e¥  (Z =c0). (B17)


http://rsta.royalsocietypublishing.org/

=

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

HIGH-FREQUENCY REFRACTION AND DIFFRACTION 387

REFERENCES

Beckmann, P. & Franz, W. 1957 Z. Naturforsch. 12a, 533.
Brekhovskikh, L. 1960 Waves in layered media. New York: Academic Press.
Bremmer, H. 1949 Terrestrial radio waves. New York: Elsevier.
Clemmow, P. C. 1959 Univ. of Michigan Studies in Radar Cross Sections XXXII.
Erdélyi, A. 1955 Asymptotic expansions, O.N.R. Tech. Rep. 3.

Felsen, L. B. 1959 Brooklyn Polytechnic Microwave Res. Inst. Memo. 55.
Fock, V. 1945 J. Phys. U.S.S.R. 9, 255.

Fock, V. 1946 J. Phys. U.S.S.R. 10, 130, 399.

Fock, V. 1948 Phil. Mag. (7), 39, 149.

Fock, V. 1951 Uspekhi Fis. Nauk, 43, 5817.

Franz, W. 1954 Z. Naturforsch. 9a, 705,

Franz, W. & Beckmann, P. 1956 Trans. Inst. Radio Engrs. AP-4, 203,
Franz, W. & Depperman, K. 1952 Ann. Phys., Lpz., 10, 361.
Friedlander, F. G. 1955 New York Univ. Res. Rep. EM~-16.
Friedlander, F. G. 1958 Sound pulses. Cambridge University Press.
Goodrich, R. F. 1959 Trans. Inst. Radio Engrs. AP-17, 528.

Goriainov, A. S. 1958 Radiotekh. Elektron, 3, 603.

Jeflreys, H. & Lapwood, E. R. 1957 Proc. Roy. Soc. A, 241, 455.
Jones, D. S. 1955 Phil. Mag. (7), 46, 957.

Jones, D. S. 19572 Proc. Roy. Soc. A, 239, 338.

Jones, D. S. 19575 Proc. Roy. Soc. A, 240, 206.

Jones, D. S. 1962 The theory of electromagnetism. London: Pergamon Press.
Jones, D. S. & Kline, M. 1958 J. Math. Phys. 37, 1.

Jones, D. S. & Whitham, G. B. 1957 Proc. Camb. Phil. Soc. 53, 691.
Kear, G. 1956 New York Univ. Res. Rep. EM~86.

Keller, J. B. 1956 Trans. Inst. Radio Engrs. AP-4, 312,

Levy, B. 1958 New York Univ. Res. Rep. EM—-121.,

Levy, B. & Keller, J. B. 1957 New York Univ. Res. Rep. EM~109.
Macdonald, H. M. 1913 Phil. Trans. A, 212, 299,

Marcuvitz, N. 1951 Commun. Pur. Appl. Math. 4, 263.

Rice, S. O. 1954 Bell System Techn. J. 33, 417.

Seckler, B. D. & Keller, J. B. 1959 J. Acoust. Soc. Amer. 31, 192, 206,
Ursell, F. J. 1957 Proc. Camb. Phil. Soc. 53, 115.

Van der Pol, B. & Bremmer, H. 1937 Phil. Mag. (7), 24, 141, 825,
Van der Pol, B. & Bremmer, H. 1938 Phil. Mag. (7), 25, 811.

Van der Pol, B. & Bremmer, H. 1939 Phil. Mag. (7), 27, 261.

Wait, J. R. & Conda, A. M. 1958 Trans. Inst. Radio Engrs. AP-6, 1957,
Wait, J. R. & Conda, A. M. 1959 J. Res. Nat. Bur. Stand. 63D, 181,
White, F. P. 1922 Proc. Roy. Soc. A, 100, 505,

Wu, T. T. 1956 Phys. Rev. 104, 1201,


http://rsta.royalsocietypublishing.org/

